MITOCW | watch?v=kUNG6rJ21Hno

PROFESSOR:

The following content is provided under a Creative Commons license. Your support
will help MIT OpenCourseWare continue to offer high quality educational resources
for free. To make a donation or view additional materials from hundreds of MIT

courses, visit MIT OpenCourseWare at ocw.mit.edu.

All right. We should probably get started. So RNA plays important regulatory and
catalytic roles in biology, and so it's important to understand its function. And so

that's going to be the main theme of today's lecture.

But before we get to that, | wanted to briefly review what we went over last time. So
we talked about hidden Markov models, some of the terminology, thinking of them
as generative models, terminology of the different types of parameters, the initiation
probabilities and transition probabilities and so forth. And Viterbi algorithm, just sort
of the core algorithm used whenever you apply HMMs. Essentially, you always use

the Viterbi algorithm.

And then we gave as an example the CpG Island HMM, which is admittedly a bit of
a toy example. It's not really used in practice, that illustrates the principles. And then

today we're going to talk about a couple of real world HMMs.

But before we get to that, | just wanted to-- sort of toward the end, we talked about
the computational complexity of the algorithm, and concluded that if you have a
case state HMM run on a sequence of length L, it's order k squared L. And this

diagram is helpful to many people in sort of thinking about that.

So you can have transitions from any state-- for example, from this state-- to any of
the other five states, and there's five-state HMM. And when you're doing the Viterbi,
you have to maximize over the five possible input transitions into each state. And so
the full set of computations that you have to do from going from position i to i plus 1
is k squared. Does that make sense? And then there's L different transitions you

have to do, so it's k squared L.

Any questions about that? OK. All right and, so the example that we gave is shown
1

here. And what we did was to take an example sort of where you could sort of see
the answer-- not immediately see it, but if we're thinking about it a little, figure out
the answer. And then we talked about how the Viterbi algorithm actually works, and

why it makes the transitions at the right place.

It seems to intuitively like it would make a transition later, but actually transitions at
the right place. And one way to think about that is that these are not hard and fast
decisions because you're optimizing two different paths. At every state, you're

considering two possibilities.

And so you explore the possibility of-- the first time you hit a ¢, you explore the
possibility of transitioning from genome to island, but you're not confirming whether
you're going to do that yet until you get to the end and see whether that path ends
up having a higher probability at the end of the sequence than the alternative. So
that's sort of one way of thinking about that. Any questions about this sort of thing,

how to understand when a transition will be made?

And | want to emphasize, for this simple HMM, we talked about you can kind of see
what the answer's going to be. But if you have any HMM, any sort of interesting real
world HMM with multiple states, there's no way you're going to be able to see it.
Maybe you could guess what the answer might be, but you're not going to be able

to be confident of what that is, which is why you have to actually implement it.

All right, good. Let's talk about a couple of real world HMMs. So | mentioned gene
finding. That's been a popular application of HMMs, both in prokaryotes and

eukaryotes. There's some examples discussed in the text.

Another very popular application are so-called profile HMMs. And so this is a hidden
Markov model that's made based on a multiple alignment of proteins which have a
related function or share a common domain. For example, there's a database called
Pfam, which includes profile HMMs for hundreds of different types of protein

domains.

And so once you have many dozens or hundreds or thousands of examples of a

protein domain, you can learn lots of things about it-- not just what the frequencies
of each residue are in each position, but how likely you are to have an insertion at
each position. And if you do have an insertion, what types of amino acid residues
are likely to be inserted in that position, and how often you are likely to have a

deletion at each position in the multiple alignment.

And so the challenge then is to take a query protein and to thread it through all of
these profile HMMs and ask, does it have a significant match to any of them? And
so that's basically how Pfam works. And the nice thing about HMMs is that they
allow you to-- if you want to have the same probability of an insertion at each
position in your multiple alignment, you can do that. But if you have enough data to
observe that there's a five-fold higher likelihood of having an insertion at position
three in a multiple alignment than there is at position two, you can put that in. You

just change those probabilities.

So in this HMM, each of the hidden states is either an M state, which is a match
state, or an | state, or an insert state. And so those will emit actual amino acid
residues. Or it could be a delete state, which is thought of as emitting a dash, a

placeholder in the multiple alignment. So these are also widely used.

And then one of my favorite examples-- it's fairly simple, but it turns out to be quite
useful-- is the so-called TMHMM for prediction of transmembrane helices in protein.
So we know that many, especially eukaryotic proteins, are embedded in
membranes. And there's one famous family of seven transmembrane helix proteins,
and there are others that have one or a few transmembrane helices. And knowing
that a protein has at least one transmembrane helix is very useful in terms of

predicting its function.

You predict it's localization. And knowing that it's a seven transmembrane helix
protein is also useful. And so you want to predict whether the protein has
transmembrane helices and what their orientation is. That is, proteins can have their
end terminus either inside the cell or outside the cell. And then of course, where

exactly those helices are.

AUDIENCE:

PROFESSOR:

And this program has about a 97% accuracy, according to [? the author. ?] So it
works very well. So what properties do you think-- we said before that you have to
have strongly different emission probabilities in the different hidden states to have a
chance of being able to predict things accurately. So what properties do you think
are captured in a model of transmembrane helices? What types of emission
probabilities would you when you have for the different states in this model?

Anyone?

So for this protein, what kind of residues would you have in here? Oops, sorry. I'm
having trouble with this thing. All right, here in the middle of the membrane, what

kind of residues are you going to see there?

[INAUDIBLE]

Those are going to be hydrophobic. Exactly. And what about right where the helix
emerges from the membrane? [INAUDIBLE] charge residue's there to kind of

anchor it and prevent it from sliding back into membrane.

And then in general, both on the exterior and interior, you'll tend to have more

hydrophilic residues. So that's sort of the basis of TMHMM.

So this is the structure. And you'll notice that these are not exactly the hidden states
that correspond to individual amino acid residues. These are like meta states, just to

illustrate the overall structure.

I'll show you the actual states on the next slide. But these were the types of states
that the author, Anders [? Crow ?], decided to model. So he has sort of a-- focuses

here on the helix core.

There's also a cytoplasmic cap and a non-cytoplasmic cap. Oops, didn't mean that.
And then there's sort of a globular domain on each side-- both on the cytoplasmic
side, or you could have one on the non-cytoplasmic side. OK, so there's going to be

different compositions in each of these regions.

Now one of the things we talked about with HMMs is that if you were-- now let's

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

think about the helix core. The simplest model you might think of would be to have
sort of a helix state, and then to allow that state to recur to itself. OK, so this type of
thing where you then have some transition to some sort of cap state after, this

would allow you to model helices of any length.

But now how long are transmembrane helices? What does that distribution look

like? Anyone have an idea? There's a certain physical dimension. [INAUDIBLE]

It takes a certain number residues to get across here, and then that number is
about 20-ish. So transmembrane helices tend to be sort of on the order of 20 plus
or minus a few. And so it's totally unrealistic to have a transmembrane helix that's,

like, five residues long.

So if you run this algorithm in generative mode, what distribution of helix lengths will
you produce? We're running in generative mode where we're going to let,
remember, to generate a series of hidden states and then associated amino acid
sequences. It's coming from some, let's say-- | don't know. What kind of states are

there here? [INAUDIBLE] plasmic.

Let's say goes into helix, hangs out here. I'm sorry, is there an answer to this
question? Anyone? | don't know how long-- if I let it run, it'll generate a random

number. It depends on what this probability is here.

Let's call this probability p, and then this would be 1 minus p. OK, so obviously if 1
minus p is bigger, it'll tend to produce longer helices. But in general, what is the
shape of the distribution there of consecutive helical states that this model will

generate?

Binomial.

Binomial. OK, can you explain why?

Because the helix would have to have probable-- the helix of length n would occur 1

minus p to the n power.

OK, so a helix of length 10 with a probability of then, say, let's call it L, for the length
5

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

of the helix, equals n is 1 minus p to the n, right? Is that binomial? Someone else?

Yeah. Is it a negative binomial?

Negative binomial. OK.

[INAUDIBLE] states and a helix state before moving out [INAUDIBLE].

Yeah. So the distribution is going to be like that. You have to stay in here for n and
then leave. So this is the simplest-- you can have special cases of binomial and
negative binomial. But in general, this distribution is called the geometric

distribution. Or a continuous version would be the exponential distribution.

So what is the shape of this distribution? If | were to plot n down here on this axis,
and the probability that L equals n on this axis, what kind of shape-- could someone

draw in the air? So you had up and then down?

OK, so actually, it's going to be just down. Like that, right? Because as n increases,

this goes down because 1 minus p is less than 1. So it just steadily goes down.

And what is the mean of this distribution? Anyone remember this? Yeah, so there's

sort of two versions of this that you'll see.

One of them is the 1 minus p n minus 1 p, and one of them is this. And so this is the

number of failures before a success, if you will. Successes lead to the helix.

And this is the number of trials till the first success. So one of them has a mean
that's 1/p, and the other has a mean that's 1 minus p over p. So usually, p is small,

and so those are about the same.

So 1/p. You could think that 1/p is roughly right. And so if we were to model
transmembrane helices, and if transmembrane heresies are about-- | said about 20

residues long-- you would set p to what value to get the right mean?

0.05.

Yeah. 0.05. 1/20, so that 1 over that will be about 20, right? And then 1 minus p

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

would, of course, be 0.9.

So if | were to do that, | would get a distribution that looks about like this with a
mean of 20. But if | were to then look at real transmembrane helices and look at
their distribution, | would see something totally different. It would probably look like

that.

It would have a mean around 20. But the probability of anything less than 15 would

be 0. That's too short. It can't go across the membrane.

And then again, you don't have ones that are 40. They don't kind of wiggle around

in there and then come out. They tend to just go straight across.

So there's a problem here. You can see that if you want to make a more accurate
model, you want to not only get the right emission probabilities with the right
probabilities of hydrophobics and hydrophilics and the different states, but you also
want to get the length right. And so the trick that-- well, actually, yeah. Can anyone

think of tricks to get the right length distribution here?

How do we do better than this? Basically, hidden Markov models where you have a
state that will recur to itself, it will always be a geometric distribution. The only
choice you have is what is that probability. And so you can get any mean you want,

but you always get this shape.

So if you want a more general shape, what are some tricks that you could do? How

could you change the model? any ideas? Yeah, go ahead.

[INAUDIBLE] have multiple helix states.

Multiple helix states. OK. How many?

Proportional to the length we want, [INAUDIBLE].

Like one for each possible length.

It'd be less than one length.

PROFESSOR:

AUDIENCE:

PROFESSOR:

Or less than one. OK. So you could have something like-- | mean, let's say you have
like this. Helix begin-- or, helix 1, helix 2. You allow each of these to recur to

themselves. What does that get you?

This actually gets you something a little bit better. It gives you a little bit about of--

it's more like that. So that's better.

But if | want to get the exact distribution, then actually one-- so this is the solution
that the authors actually used. They made essentially 25 different helix states, and
then they allowed various different transitions here. So it's a larger arbitrary here,

but they have this special state three that can kind of take a jump.

So it can just continue on to four, and that'll make your maximum length helix core.
Or it can skip one, go to five, and that'll make a helix core that's one residue shorter
than that, or it can skip two, and so forth. And you can set any probabilities you want

on these transitions.

As so you can fit basically an arbitrary distribution within a fixed range of lengths
that's determined by how many states you have. OK, so they really wanted to get
the length distribution right, and that's what they did. What's the cost of this? What's

the downside? Simona?

| was just going to ask, it looks like from this your minimum helix length could be

four.

Yeah. That's a good question. Well, we don't know what the probabilities-- they say
said on that. Well, did they really mean that? And also, that's only the core, and
maybe these cap things can be-- yeah, that seems a little short to me. So yeah, |
agree. I'm not sure. It could just be for the sake of illustration, but they don't actually
use those. But anyway, I'll probably have to read the paper. | haven't read this

paper for many years so | don't remember exactly the answer to that.

But | have a citation. You can look it up if you're curious. But the main point | wanted

to make with this is just that by setting an arbitrary number of states and putting in

AUDIENCE:

PROFESSOR:

possible transitions between them, you can actually construct any length of

distribution you want. But there is a downside, and what is that downside?

Computational cost.

Yeah, the computational cost. Instead of having one helix state, now we've got 25 or
something. So and the time goes up by the square of the number of states, so it's

going to run slower. And you also have to estimate all these parameters.

OK, so here's an example of the output of the TMHMM program for a mouse
chloride channel gene, CLC6. So the program predicts that there are seven
transmembrane helices, as shown by these little red blocks here. You can see
they're all about the same-- about 20 or so-- and that the program starts outside

and ends inside.

So let's say you were going to do some experiments on this protein to test this
prediction. So one of the types of experiments people do is they put some sort of
modifiable or modified residue into one of the spaces between the transmembrane
helices. And then you can test, by modifying this cell with something that's a non-
permeable chemical, can you modify that protein? So only if that stretches on the

outside of the cell will you be able to predict it.

So that's a way of testing the topology. So if you were doing those types of
experiments, you might actually-- like maybe you're not sure if every
transmembrane helix is correct. There could be some where the boundaries were a

little off, or even a wrong helix.

And so one of the things that you often want with a prediction is not only to know
what is the optimal or most likely prediction, but also how confident is the algorithm
in each of the parts of its prediction. How confident is it in the location of
transmembrane helix three or the probability that actually there is a transmembrane
helix three. And so the way that this program does that is using something called

the forward-backward algorithm.

So those of you who read the Rabener tutorial, it's described pretty well there. The
9

basic idea is that | mentioned that this Po-- the probability of the observable
sequence summing over all possible HMM structures or all possible sequences of

hidden states-- that is possible to calculate.

And the way that you do it is you run an algorithm that's similar to the Viterbi, but
instead of taking the maximum entering each hidden state at intermediate positions,
you sum those inputs. So you just do the sum at every point. And it turns out that
will calculate the sum of the two values at the end-- or the k values at the end will be
equal to the sum of the probabilities of generating the observable sequence over all

possible sequences of hidden states. OK, so that's useful.

And then you can also run it backwards. There's no reason it has to be only going in
one direction. And so what you do is you run these sort of summing versions of the

Viterbi in both the forward direction and also run one in the backward direction.

And then you take a particular position here-- like let's say this is your helix state, for
example. And we're interested in this position somewhere in the middle of the

protein. Is that a helix or not?

And so basically you take the value that you get here from the forward in your
forward algorithm and the value that you get here in the backward algorithm, and
multiply those two together, and divide by this Po. And that gives you the probability.
So that ends up being a way of calculating the sum of all the parses that go through

this particular position i in the sequence in that particular state.

| mean, | realize that may not have been totally clear, and | don't want to take more
time to totally go into it, but it is pretty well described and Rabener. And I'll just give
you an example. So if you're motivated, please take a look at that. And if you have

further questions, I'd be happy to discuss during office hours next week.

And this is what it looks like for this particular protein. So you get something called
the posterior probability, which is the sum of the probabilities of all the parses. And
they've plotted it for the particular state that is in the Viterbi path, that is in the

optimal parse-- so for example, in blue here.

10

Well, actually, they've done it for all the different states here. So blue is the
probability that you're outside. OK, so it's very, very confident that the end terminus
of the protein is outside the cell. It's very, very confident in the locations of

transmembrane helices one and two.

It actually more often than not thinks there's actually a third helix right here, but that
didn't make it in the optional parse. That actually occurs in the majority of parses,
but not in the optimal. And it's probably because it would then cause other things to

be flipped later on if you had transmembrane helix there.

It's not sure whether there's a helix there or not, but then it's confident in this one.
OK, so this gives you an idea. Now if you wanted to do some sort of test of the
prediction, you want to test probably first the higher confidence predictions, so you

might do something right here.

Or if maybe from experience you know that when it has a probability that's that high,
it's always right, so there's no point testing it. So you should test one of these kind of
less confident regions. So this actually makes the prediction much more useful to

have some degree of confidence assigned to each part of the prediction.

So for the remainder of today, | want to turn to the topic of RNA secondary
structure. So at the beginning, | will sort of get through some nomenclature. And
then to motivate the topic, give some biological examples of RNA structure. Gives

me an excuse to show some pretty pictures of structure.

And then we'll talk about two approaches which are two of the most widely used
approaches toward predicting structure. So using evolution to predict structure by
method of co-variations, which works well when you have many homologous
sequences. And then using sort of first principles thermodynamics to predict
secondary structure by energy minimization where obviously you don't need to have
a homologous sequence present. And the nature biotechnology primer on RNA

folding that | recommended is a good intro to the energy minimization approach.

So what is RNA secondary structure? So you all know that RNAs, like proteins, have

11

a three-dimensional tertiary fold structure that, in many cases, determines their
function. But there's also sort of a simpler representation of this structure where you

just describe which pairs of bases are hydrogen bonded to one other.

OK, and so for RNA-- so it's a famous example of an RNA structure, this sort of
clover leaf structure that all tRNAs have. The secondary structure of the tRNA is the
set of base pairs. So it's this base pair here between the first base and this one

toward the end, and then base right here, and so forth.

And so if you specify all those base pairs, then you can then draw a picture like this,
which gives you a good idea of what parts of the RNA molecule are accessible. So
for example, it won't tell you where the anticodon loop is, which is sort of the

business end of the tRNA. But it narrows it down to three possibilities.

You might consider that, or that, or down here. It's unlikely to be something in here
because these bases are already paired. They can't pair to message. So it gives

you sort of a first approximation toward the 3D structure, and so it's quite useful.

So how do we represent secondary structure? So there's a few different common
representations that you'll see. So one is-- and this is sort of a computer-friendly but
not terribly human-friendly representation, | would say-- is this sort of dot in

parentheses notation here.

So the dot is an unpaired base and the parenthesis is a paired base. And how do
you know-- chalk is sort of non-uniformly distributed here-- so if you have a
structure like this and you have these three parentheses, what are they paired to?

Well, you don't know yet until you get further down.

And then each left parenthesis has to have a right parenthesis somewhere. So now
if we see this, then we know that there are two unpaired bases here, and then
there's going to be three in a row that are paired-- these guys. We don't know what

they're paired to yet.

Then there's going to be a five base pair loop, maybe a little pentagon type thing.

Two, three, four-- oops-- four, five. And this one would be the right parentheses that
12

pair with the left parentheses over here. | should probably draw this coming out to
make it clearer that it's not paired. So this notation you can convert to this. So after

a while, it's relatively easy to do this, except when they're super long.

So that's what the left part of that would look like. So what about the right part? So
the right part, we have something like one, two, three, four, bunch of dots, and then

we have two, and then a dot, and then two. What does that thing look like?

So that's going to look like four bases here in a stem. Big loop, and then there's
going to be two bases that are paired, and then a bulge, and then two more that are

paired. These things happen in real structures.

OK and then the arced notation is a little more human-friendly. It actually draws an
arc between each pair of bases that are hydrogen bonded. So I'm sure you can

imagine what those structures would look like.

And it turns out that the arcs are very important. Like whether those arcs cross each
other or not is sort of a fundamental classification of RNA secondary structures, into
the ones that are tractable and the ones that are really difficult. So pretty pictures of

RNA.

So this is a lower resolution cryo-EM structure of the bacterial ribosomes.
Remember, ribosomes have two sub-units-- a large sub-unit, 50S, and a small sub-
unit, 30S. And if you crack it open-- OK, so you basically split. You sort of break the

ribosome like that, and you look inside, they're full of tRNAs.

So there are three pockets that are normally distinguished within ribosomes. The A
site-- this is the site where the tRNA enters that's going to add a new amino acid to
the growing peptide chain. The P site, which is this tRNA will have it [INAUDIBLE]
with the actual growing peptide. And then the exit tunnel where this tRNA will
eventually-- the exit, the E site, which is the one that was added a couple of

residues ago.

So people often think of RNA structure just in terms of these secondary structures

because they're much easier to generate than tertiary structures, and they give you-
13

- like for tRNA, it gives you some pretty good information about how it works. But for
a large and complex structure like the ribosome, it turns out that RNA is actually not
bad at building complex structures. | would say it's not as good as protein, but it is

capable of constructing something like a long tube.

And in fact, in the ribosome, you find such a long tube right here. That is where the
peptide that's been synthesized exits the ribosome. And you'll notice it's not a large

cavity in which the protein might start folding.

It's a skinny tube that is thin enough that the polypeptide has to remain linear,
cannot start folding back on itself. So you sort of extrude the protein in a linear,
unfolded confirmation, and let it fold outside of the ribosome. If it could fold inside
that, that might clog it up. That's probably one reason why it's not designed that

way. I'm sure that was tried bye evolution and rejected.

So if you look at the ribosome-- now remember, the ribosome is composed of both
RNA and protein-- you'll see that it's much more of one than the other. And so it's
really much more of the fettuccine, which is the RNA part, than the linguini of the
protein. And if you also look at the distribution of the proteins on the ribosome, you'll

see that they're not in the core.

They're kind of decorated around the edges. It really looks like something that was
originally made out of RNA, and then you sort of added proteins as accessories
later. And that's probably what happened. This is based on the structures that were

solved a few years ago.

If you then look at where the nearest proteins are to the active site-- actual catalytic
site-- remember, the ribosome catalyzes peptide in addition to an amino acid to a
growing peptide, so peptide bond formation-- you'll find that the nearest proteins are
around 18 to 20 angstroms away. And this is too far to do any chemistry, so the
active site residues or molecules need to be within a few angstroms to do any useful
chemistry. And so this basically proves that the ribosome. Is a ribozyme. That is, it's

an RNA enzyme. RNAs is [INAUDIBLE].

14

AUDIENCE:

PROFESSOR:

So here is the structure of a ribosome. It's very kind of beautiful, and it's impressive
that somebody can actually solve the structure of something this big. But what is
actually the practical use of this structure? Turns out there's quite an important

practical application of knowing the structure. Any ideas?

Antibiotics.

Antibiotics. Exactly. So many antibiotics work by taking advantage of differences
between the prokaryotic ribosome structure and eukaryotic ribosome structure. So if
you can make a small molecule-- these are some examples-- that will inhibit
prokaryotic ribosomes but hopefully not inhibit eukaryotic ribosome, then you can kill

bacteria that might be infecting you.

So non-coding RNA. So there's many different families of non-coding RNAs, and I'm
going to list some in a moment. And I'm going to actually challenge you, see if you

can come up with any more families of non-coding RNAs.

But they're receiving increasing interest, | would say, ever since micro RNA's were
discovered. Sort of a boom in looking at different types of non-coding RNAs. Link
RNA is also important and interesting, as well as many of the classical RNA's like

tRNAs and rRNAs and snoRNAs.

There may be new aspects of their regulation and function that will be interesting.
And so when you're studying a non RNA, it's very, very helpful to know its structure.
If it's going to base pair in trans with some other RNA-- as tRNAs do, as micro
RNA's do, for example, or snRNAs and snoRNAs-- then you want to know which

parts of the molecule are free and which are internally based paired.

And if you want to predict non RNAs genes in a genome, you may want to look for
regions that are under selection for conservation of RNA structure, for conservation
of the potential to base pair at some distance. If you see that, it's much more likely
that that region of the genome encodes a non-coding RNA than it codes, for
example-- there's a coding axon or that it's a transcription factor binding site or

something like that that functions at the DNA level. So having this notion of

15

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

structure-- even just secondary structure-- is helpful for that application as well, and

predicting functions as well, as | mentioned.

So co-variation. So let's take a look at these sequences. So imagine you've
discovered a new class of mini micro RNA's. They're only eight bases long, and

you've sequence five homologues from your five favorite mammals.

And these are the sequences that you get. And you know that they're homologous
by [? a centimeter ?], they're in the same place in the genome, and they seem to
have the same function. What could you say about their secondary structure based
on this multiple alignment? You have to stare at it a little bit to see the pattern.

There's a pattern here.

Any ideas? Anyone have a guess about what the structure is? Yeah, go ahead.

There's a two base pair stem, and then a four base loop.

Two base pair stem, four base loop, and you have of the stem. So how do you know

that?

So if you look at the first two and last two bases of each sequence, the first and the
eighths nucleotide can pair with each other, and so can the second and the

seventh.

Yeah. Everyone see that? So in the first column you have AUACG, and that's

complementary to UAUGC. Each base is complementary.

And the second position is CAGGU complementary to GUCUA. There's one slight

exception there.

[INAUDIBLE]

Yeah. Well, it turns out that that RNA-- although the Watson Crick pairs GC and AU
are the most stable-- GU pairs are only a little bit less stable than AU pairs, and they
occur in natural RNA molecules. So GU is allowed in RNA even though you would

never see that in DNA. OK, so everyone see that?

16

So the structure is-- | think | have it here. This would be co-variation You're
changing the bases, but preserving the ability to pair. So when one base change--
when the first base changes from A to U, the last base changes from U to A in order

to preserve that pairing.

You wouldn't know that if you just had two sequences, but once you get several
sequences, it can be pretty compelling and allow you to make a pretty strong
inference that that is the structure of that molecule. So how would you do this? So
imagine you had a more realistic example where you've got a non-coding RNA
that's 100 or a few hundred bases long, and you might have a multiple alignment of

50 homologous sequences.

You want something, you're not going to be able to see it by eye. You need sort of a
more objective criterion. So one method that's commonly used is this statistic IX

mutual information.

So if you look in your multiple alignment-- I'll just draw this here. You have many
sequences. You consider every pair of columns-- this is a multiple alignment, so this
column and this column-- and you calculate what we're going to call-- what are we

going to call it? f ix.

That would be the frequency of a nucleotide x. You're in column i, so you just count
how many A's, C's, G's, and T's there are. And similarly, f jy for all the possible

values of x and all the possible values of y.

So these are the base frequencies in each column. And then you calculate the
dinucleotide frequencies xy at each pair of columns. So in this colony, you say if
there's an A here and a C here, and then there's another AC down here, and

there's a total of one, two, three, four, five, six, seven sequences, then f AC ij is 2/7.

So you just calculate the frequency of each dinucleotide. These are no longer
consecutive dinucleotides in a sequence necessarily there. They can be in arbitrary

spacing.

17

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

OK, so you calculate those and then you throw them into this formula, and out
comes a number. So what does this formula remind of? Have you seen a similar

formula before?

[INAUDIBLE]

Someone said [INAUDIBLE] Yeah, go ahead.

It reminds me of the Shannon entropy [INAUDIBLE].

Yeabh, it looks like Shannon entropy, but there's a log of a ratio in there, so it's not

exactly Shannon entropy. So what other formula has a log of a ratio in it?

[INAUDIBLE]

Relative. So it actually looks like relative entropy. So relative entropy of what versus
what? Who can sort of say more precisely if it's-- we'll say it's relative entropy of

something versus a p versus g. And what is p and what is q? Yeah, in the back.

Is it relative entropy of co-occurrence versus independent occurrence?

Good. Yeah. co-occurence-- everyone get that? Co-occurrence of a pair of
nucleotide xy at positions ij. Versus q is an independent occurrence. So if x and y

occurred independently, they would have this frequency.

So if you think about it, you calculate the frequency of each base at each column in
the multiple alignment. And this is like your null hypothesis. You're going to assume,
what if they're evolving independently? So if it's not a folded RNA-- or if it's a folded
RNA but those two columns don't happen to interact-- there's no reason to suspect

that those bases would have any relationship to each other.

So this is like your expected value of the frequency of xy in position ij. And then this
p is your observed value. So you're taking relative entropy of basically observed

over expected.

And so relative entropy has-- | haven't proved this, but it's non-negative. It can be 0,

18

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

PROFESSOR:

and then it goes up to some maximum, a positive value, but it's never negative. And

what would it be if, in fact, p were equal to q? What would this formula give?

This is where we're saying suppose. Suppose this. In general, this won't be sure,

but suppose it was equal to that. We've got mi ij equals summation of what?

That log of this, which is equal to this, so it's fx i fy j over the same thing-- hope you

can see that-- log of-- log of 1 is 0, right? So it's just 0.

So if the nucleotides of the two columns occur completely independently, mutual
information is 0. And that's one reason it's called mutual information. There's no
information. Knowing what's in column i gives you no information about column j. So

remember, relative entities are measures of information, not entropy.

And what is the maximum value that the mutual information could have? Any ideas

on that? Any guesses? Joe, yeah.

You could have log base 2 log over f sub x, f sub y.

Of 1?7 OK, so you're saying if one of the particular dinucleotides had a frequency of

12

Yeah. So if they're always the same whenever there's-- like an A, there's always

goingtobeaT.

Right. So whenever there's an A, there's alwaysa GoraT.

So then you'd get a 1 in the numerator, and they're relative probably in the bottom,

which would be maximized if they were all even.

If they were all?

[INTERPOSING VOICES]

If they were uniform. Yeah. So did everyone get that? So the maximum occurs if fx i
and j-- they're both uniform, so they're a quarter for every base at both positions.
That's the maximum entropy in the background distribution.

19

But then if fx y ij equals 1/4, for example, x equals y-- or in our case, we're not
interested in that. We're interested in x equals complement of y. C of y is going to

be the complement of y. And 0 otherwise for x not equal complement of y.

OK, so for example, if we have only the dinucleotides AT, CG, GC, and TA occur,
and each of them occurs with a frequency of 1/4, then you'll have four terms in the
sum because, remember, the 0 log 0 is 0. So you'll have four terms in the sum, and

each of them will look like 1/4 log 1/4 over a 1/4 times 1/4.

And so this will be 4, so log 2 of 4 4 is 2. And so you have four terms that are each

1/4 times 2. And so you'll get 2.

Well, this is not a sum. These are the four terms. These are the individual nonzero

terms in that sum. Does that make sense? Everyone get this?

So that's why this is a useful measure of co-variation. If what's in one column really
strongly influences what's in the other column, and there's a lot of variation in the
two columns, and so you can really see that co-variation well, then mutual
information is maximized. And that's basically what we just said, is written down

here.

So it's maximal. They don't have to be complementary. It would achieve this
maximum of 2 if they are complementary, but it would be also if they had some
other very specific relationship between the nucleotides. So if you're going to use
this, the way you would use it is take your multiple alignment, calculate the mutual
information of each pair of columns-- so you actually have to make a table, i versus
j, all possible pairs of columns-- and then you're going to look for the really high

values.

And then when you find those high values, when you look at what actual bases are
tending to occur together, you'll want to see that they're bases that are
complementary to one another. And another thing that you'd want to see is you'd
want to see that consecutive positions in one part of the alignment are co-varying

with consecutive positions in another part of the alignment in the right way, in this
20

sort of inverse complementary way that RNA likes to pair.

Does that make sense? So in a sort of nested way in your multiple alignment, if you
saw that this one co-varied with that, and then you also saw that the next base co-
varied with the base right before this one, and this one co-varies with that one, that
starts to look like a stem. It's much more likely that you have a three-base stem than
that you just have some isolated base pair out in the middle of nowhere. It turns out
it takes a few bases to make a good thermodynamically stable stem, and so you

want to look for blocks of these things.

And so this works pretty well. Yeah, actually, one point | want to make first is that
mutual information is nice because it's kind of a useful concept and it also relates to
some of the entropy and relative entropy that we've been talking about in the course
before. But it's not the only statistic that would work in practice. You can use any
measure of basically non-independence between distributions. A chi square statistic

would probably work equally well in practice.

And so here is a multiple alignment of a bunch of sequences. And what I've done is

put boxes around columns that have significant

mutual information with other sets of columns. So for example, this set of columns
here at the left-- the far left-- has significant mutual information with the ones at the
far right. And these ones, these four positions co-vary with these four, and so forth.
So can you tell, based on looking at this pattern of co-variation, what the structure is

going to be?

OK, let's say we start up here. The first is going to pair with the last, with something
at the end. Then we're going to have something here in the middle that pairs with
something else nearby. Then we have something here that pairs with something

else nearby, then we have another like that.

Does that make sense? So that there's these three pairs of columns in the middle--
these two, these two, and these two-- and then they're surrounded by this thing, the

first pairing with the last. And so it's a clover leaf, so that's tRNA. Yeah?

21

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

So with that previous slide, this table here, you could create a co-variation matrix.

How would that-- or, and it could be--

How does that co-variations matrix-- how do you convert it to this representations?

I'm just wondering how this would go up. Like let's say you took the co-variation

matrix--

Oh, what would it look like?

--and visualized it as a heat map--

In the co-variation matrix.

Yeah. What would it look like in this particular example?

Yeah, that's a good question. OK, let's do that. | haven't thought about that before,

so you'll have to help me on this. So here's the beginning.

We're going to write the sequence from 1 to n in both dimensions. And so here's the
beginning, and it co-varies with the end. So this first would have a co-variation with
the last, and then the second would co-vary with the second to last, and so forth. So

you get a little diagonal down here. That's this top stem here.

And then what about the second stem? So then you have something down here
that's going to co-vary with something kind of near by it. So block two is going to co-
vary with block three. And again, it's going to be this inverse complementary kind of

thing like that.

It's symmetrical, so you get this with that. But you only have to do one half, so you
can just do this upper half here. So you get that. So it would look something like

that.

So with the diagonal line orthogonal to the diagonal of the matrix--

Yeah, that's because they're inverse complementary.

22

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

OK.

That make sense? Good question. But we'll see an example like that later actually,

as it turns out.

All right, so here's my question for you. You're setting this non-coding RNA. It has

some length. You have some number of sequences.

They might have some structure. Is this method going to work for you, or is it not?

What is required for it to work?

For example, would | want to isolate this gene-- this non-coding RNA gene-- just
from primates, from like human, gorilla, chimp, orangutan, and do that alignment?
Or would | want to go further? Would | want to go back to the rodents and dog,

horse-- how far do you want to go? Yeah, question.

| think we a need a very strong sequence alignment for this, so we cannot go very
far, because if you don't have a high percentage homology, then you will see all

sorts of false positives.

Absolutely. So if you go too far, your alignment will suffer, and you need an
alignment in order to identify the corresponding columns. So that puts an upper limit

on how far you can go. But excellent point.

Is there a lower limit? Do you want to go as close as possible, like this example |
gave with human, chimp, orangutan? Or is that too close? Why is too close bad?

Tim?

Maybe if you're too close, then the sequence is having to [INAUDIBLE] to give you
enough information [INAUDIBLE].

Yeah, exactly. They're all the same. Actually, you'll get 1 times 1 over 1 in that
mutual information statistic, which log of that is going to be 0. There's zero mutual

information if they're all the same.

So there has to be some variation, and the structure has to be conserved. That's

23

AUDIENCE:

PROFESSOR:

AUDIENCE:

key. You have to assume that the structure is well conserved and you have to have

a good alignment and there has to be some variation, a certain amount of variation.

Those are basically the three keys. Secondary structure has a more highly
conserved sequence. Sufficient divergence so that you have these variations, and
sufficient number of homologues you have to get good statistics, and not so far they

your alignment is bad. Sorry about that. Sally?

It seems like another thing that we assume here is that you can project it onto a
plane and it will lie flat. So if you have some very important, weird folding that allows

you to, say, crisscross the rainbow thing.

Yeah, crisscross the rainbow. Yeah, very good question. So in the example of tRNA,
if you were to do that arc diagram for tRNA, it would look like another big arc-- that's
the first and last-- and then you have these three nested arcs. Nothing

crisscrossing.

What if | saw-- [INAUDIBLE]-- two blocks of sequence that have a relationship like
that? Is that OK? With this method, the co-variation, that's OK. There's no problem

there. What does this structure look like?

So [INAUDIBLE] you have a stem, then you have a loop, and then a stem. So this is

1 pairs with 3. That's 1. That's 3.

Then you've got 2 up here, but 2 pairs with 4. So here's 4 over here, so 4 is going to

have to come back up here and pair with 2. This is 2 over here.

So that is called a pseudoknot. It's not really a knot because this thing doesn't go
through the loop, but it kind of behaves like a knot in some ways. And so do these

actually occur in natural RNAs? Yes, Tim is nodding.

And are they important? Can you give me an example where they are important

biologically?

[INAUDIBLE]

24

PROFESSOR:

AUDIENCE:

PROFESSOR:

[INTERPOSING VOICES]

Riboswitches. We're going to come to what riboswitches are in a moment for those
not familiar. And | think | have an example later of a pseudoknot that's important. So

that's a good question.

| think | should have added to this list the point that you made in the back that they
have to be close enough that you can get a good alignment. | should add that to this

last. Thanks. It's a good point.

All right, so classes of non-coding RNAs. As promised, my favorites listed here.
Everyone knows tRNAs, rRNAs. You can think of UTRs as being non RNAs. They

often have structure that can be involved in regulating the message.

snRNAs involved splicing. snoRNAs-- small nucleolar RNAs-- are involved in
directing modification of other RNAs, such as ribosomal RNAs and snRNAs, for
example. Terminators of transcription in prokaryotes are like little stem loop

structures.

RNaseP is an important enzyme. SRP is involved in targeting proteins with signal
peptides to the export machinery. We won't go into tmRNA. micro RNAs and link
RNAs, you probably know, and riboswitches. So Tim, can you tell us what a

riboswitch is?

A riboswitch is any RNA structure that changes confirmation according to some
stimulus [INAUDIBLE] or something in the cell. It could be an ion, critical changes in

the structure. [INAUDIBLE].

Yeah, that was great. So just for those that may not have heard, I'll just say it again.
So a riboswitch is any RNA that can have multiple confirmations, and changes
confirmation in response to some stimulus-- temperature, binding of some ligand,

small molecules, something like that, et cetera.

And often, one of those structures will block a particular regulatory element. I'll show

an example in a moment. And so when it's in one confirmation, the gene will be

25

repressed. And when it's in the other, it'll be on. so it's a way of using RNA's
secondary structure to sense what's going on in the cell and to appropriately

regulate gene expression.

All right, so now we're going to talk about a second approach. So this would be the
approach. You've got some RNA. It may not do something, and maybe you can't

find any homologues.

It might be some newly evolved species-specific RNA, or your studying some
obscure species where you don't have a lot of genomic sequence around. So you
want to use the first principles, approach, the energy minimization approach. Or
maybe you have the homologues, but you don't trust your alignment. You want a

second opinion on what the structure is going to be.

So just in the way that protein folding-- you could think of an equilibrium model
where it's determined by folding free energy, and enthalpy will favor base pairing.
You get gain some enthalpy when you form a hydrogen bond, and entropy will tend
to favor unfolding. So an RNA molecule that's linear has all this confirmational
flexibility, and lose some of that when you form a stem. It forms a helix. Those

things don't have as much flexibility.

And even the nucleotides in the loop are a little bit confirmationally-- they're not as
flexible as they were when it was linear. So that means that at high temperatures,
it'll favor unfolding. So the earliest approaches were approaches that sought to

maximize the number of base pairs.

So they basically ignore entropy and focus on the enthalpy that you gain from
forming base pairs. And so Ruth Nussinov described the first algorithm to figure out
what is the maximum number of base pairs that you can form in an RNA. And so a

way to think about this is imagine you've got this sequence.

What is the largest number of base pairs | can form with this sequence? | could just

draw all possible base pairs. That A can pair with that T. This A can pair with that T.

They can't both pair simultaneously, right? And this C can pair with that G. So if we
26

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

don't allow crossing, which-- coming back to Sally's point-- this would cross this,
right? So we're not going to allow that. So the best you could do be to have this A

pair with this C and this C pair with this G and form this little structure.

This is not realistic because RNA loops can't be one base. They minimum is about
three. But just for the sake of argument, you can list all these out, but imagine now

you've got 100 bases here.

Every base will on average potentially be able to pair with 24 or 25 other bases. So
you're just going to have just an incredible mishmash of possible lines all
crisscrossing. So how do you figure out how to maximize that pairing? Any ideas?

Don, yeah?

You look for sections of homology.

We're not using homology. We're doing [INAUDIBLE]

I'm sorry, not homology, but sections where--

Complementary?

Complementary. Yeah, that's the word | was thinking.

The blocks are complementary.

And then so--

You could blast the sequence against inverse complements itself and look for little
blocks. You could do that. That's not what people generally do, mostly because the
blocks of complementarity in real RNA structures are really short. They can be two,

three, four, bases. Sally, yeah?

Could you use [INAUDIBLE] approach where you just start with a very small case

and build up?

So we've seen that work for protein sequence alignment. We've seen it work for the

Viterbi algorithm. So that is sort of the go-to approach in bioinfomatics, is to use
27

some sort of dynamic programming.

Now this one for RNA secondary structure that Nussinov came up with is a little bit
different than the others. So you'll see it has a kind of different flavor. It turns out to
be actually it's a little hard to get your head around at the beginning, but it's actually

easier to do by hand. So let's take a look at that.

OK, so recursive maximization of base pairing. Now the thing about base pairing
that's different from these other problems is that the first base in the sequence can

base pair with the last. How do you chop up a sequence?

Remember with Needleman-Wunsch and with Viterbi we go from the beginning to
the end, and that's a logical order. But with base pairing, that's actually not a logical

order. You can't really do it that way.

So instead, you go from the inside out. You start in the middle of a sequence and
work your way outwards in both directions. Or another way to think about it is you
start with you write the sequence from 1 to n on both axes, and then actually we'll

see that we initiate the diagonal all to 0's.

And then we think about these positions here next. So 1 versus 2. Could 1 pair with

27 And could 2 pair with 3?

Those are like little bits of possible RNA secondary structure. Again, we're ignoring
this fact that loops have to be certain minimum. This is sort of a simplified case. And

then you build outwards.

So you conclude that base 4 here could pair with base 5, so we're going to put a 1
there. And then we're going to build outward from that toward the beginning of the
sequence and toward the end, adding additional base pairs when we can. That's

basically the way the [INAUDIBLE] works.

And so that's one key idea, that we go from sort of close sequences, work outward,
to faraway sequences. And the second key idea is that the relationship that, as you
add more bases on the outside of what you've already got, that the optimal

28

structure in that larger portion of sequence space is related to the optimal structures

of smaller portions of it in one of four different ways. And these are the four ways.

So let's look at these. So the first one is probably the simplest where if you're doing
this, you're here somewhere, meaning you've compared sequences from position,
let's say, i minus 1 to j minus 1 here. And then we're going to consider adding--

actually, it depends how you number your sequence. Let me see how this is done.

Sorry. iplus 1.

i plus 1 to j minus 1. We figured out what the optimal structure is in here, let's
suppose. And now we're going to consider adding one more base on either end.

We're going to add j down here, and we're going to ask if it pairs with i.

And if so, we're going to take whatever the optimal structure was in here and we're
going to add one base pair, and we're going to add plus 1 because now it's got one

additional. We're counting base pairs. So that's that first case there.

And then the second case is you could also consider just adding one unpaired base
onto whatever structure you had, and then you don't add one. And you could go in
either direction. You can go sort of toward of the beginning of the sequence or

toward the end of the sequence.

And then the third one is the tricky one, is what's called a bifurcation. You could
consider that actually i and j are both paired, but not with each other. That i pairs
with something that was inside here and j pairs with something that was inside here.
So your optimal parse from i to j, if you will, is not going to come from the optimal
parse from i plus 1 to j minus 1. It's going to come from rethinking this and doing the

optimal parse from here to here and from here to here, and combining those two.

So you're probably confused by now, so let me try to do an example. And then |
have an analogy that will confuse you further. So ask me for that one. This was the

simplest one | could come up with that has this property.

OK, so we said before that if you were doing the optimal from 1 to 5, that it would be

the AC pairing with the GT. We do that one. And now if you notice, this guy is kind of
29

a similar sequence. | just added a T at the beginning and an A at the end.

And so you can probably imagine that the best structure of this is here, those three.
You've got three pairs of this sub-sequence here. That's as good as you can do with
seven bases. You can only get three pairs. And this is as good as you can do with

five, so these are clearly optimal.

So the issue comes that if you're starting from somewhere in the middle here-- let's
say you are-- let's see, so how would you be doing this? You start here. Let's
suppose the first two you consider are these two. You consider pairing that T with

that A.

You can see this is not going to go well. You might end up with that as your optimal
substructure of this region. Remember, you're working from the inside out, so you're

going from here to here, and you end up with that.

And what do you do here? You don't have a G to pair the C to, so you add another
unpaired base. Now you've got this optimal substructure of a sequence that's
almost the whole sequence. It's just missing the first and last bases, but it only has

three base pairs.

So when you go to add this, you can say, oh, | can't add any more base pairs, so
I've only got three. But you should consider that we've already solved the optimal
structure of that, and we had two nice pairs here. We had that pair and that pair,
and we already solved the substructure of the optimal structure of this portion here,

and you had those three pairs.

And so you can combine those two and all of a sudden you can do much better. So
that's what that bifurcation thing is about. So this is the recursion working out, and
you can see that's the base pairing one. You can add one, or you can just add an

unpaired base and you don't add anything.

Or you consider all the possible locations of bifurcations in-between the two
positions you're adding, i and j, and you consider all the possible pairs. And you just

sum up each pair and go-- I'm sorry, you don't sum them up. You consider them all,
30

and then you take the maximum.

All right, so the algorithm is to take an n by n matrix, initialize the diagonal to 0, and

initialize the sub-diagonal to 0 also. Just don't think too much about that. Just do it.

And then fill in this matrix recursively from the diagonal up and to the right. And it
actually doesn't matter what order you fill it in as long as you're kind of working your
way up into the right. You have to have the thing to the left and the thing below

already filled in if you're going to fill in a box.

And then you keep track of the optimal score, which is going to be the sum of base
pairs. And then you also keep track of how you got there. What base pair did you

add so that you can trace back?

And then when you get up to the upper right corner of this matrix, you then trace
back. So here is a partially filled in this matrix. This is from that the Nature

Biotechnology Review. And the 0's are filled in.

So here's what | want you to do at home, is print out, photocopy or whatever-- make
this matrix, or make a bigger version of it perhaps-- and look at the sequence and
fill in this matrix, and fill in the little arrows every time you add a base pair. It's
actually not that hard. There are no bifurcations in this, so that's the tricky one.

Ignore that one.

You'll just be adding base pairs. It'll be pretty easy. And then you can reconstruct

the sequence.

So here it is filled in. And the answer is given, so you can check yourself. But do it

without looking at the answer. And then you go to the upper right corner.

That means that the optimal structure from the beginning of the sequence to the
end-- which, of course, was our goal all along. And then you trace back and you can
see whenever you're moving diagonally here, you're adding a base pair.
Remember, you add one on each end, and so you're moving diagonally and adding

the base pair, and you get this little structure here.
31

So computational complexity of the algorithm. You could think about this but I'll just
tell you. It's memory n squared because you've got to fill in this matrix, so square of

the length of the sequence.

Time n cubed. This is bad now. And why is it n cubed? It's n cubed because you
have to fill in a matrix that's n by n. And then when you do that maximization step,

that check for bifurcations, that's sort of of order n, as well.

So n cubed-- so this means that RNA folding is slow. And in fact, some of the
servers won't allow you to fold anything more than a thousand bases because they'll
take forever or something like that. And it cannot handle pseudoknots. If you think

through the recursion, pseudoknots will be a problem.

I'm going to just show you-- yeah, I'll get to this-- that these are from the viruses.
Real viruses, some of them have pseudoknots like these ones shown here, and
some even have these kissing loops, which is another type where the two stem
loops, the loops interact. And the pseudoknots in particular are important in the viral

life cycle.

They can actually cause programmed ribosomal frame shifting. When the
ribosomes hits one of the things, normally it just denatures RNA secondary
structure. When it hits a pseudoknot, it'll actually get knocked back by one and will
start translating in a different frame. And that's actually useful to the virus to do that

under certain circumstances.

That's how HIV makes the replicated polymerase, is by doing a frame shift on the
ribosome using a pseudoknot. So these things are important. And there's fancier
methods that use more sophisticated thermodynamic models where GC counts

more than AU.

And | won't go into the details, but | just wanted to show you some pretty pictures
here that the Zuker algorithm-- this is a real world RNA folding algorithm-- calculates
not only the minimum energy fold, but also sub-optimal folds, and the probabilities

of particular base pairs, summing over all the possible structures that RNA could
32

form, weighted by their free energy. So it's the full partition function.

It's not perfectly accurate. It gets about 70% of base pairs correct, which means it
usually gets things right, but occasionally totally wrong. And there's a website for the
Mfold server, which is actually one of the most beautiful websites in bioinfomatics, |
would say. And also if you want to run it locally, you should download the Vienna

RNAfold package, which has a very similar algorithm.

And | just wanted to show you one or two examples. So this is the U5 snRNA. This
is the output of Mfold. It predicts this structure. And then this what's called the
energy dot plot, which shows the bases in the optimal structure down below here
and then sort of these suboptimal structures here. And you can see there's no

ambiguity. It's totally confident in this structure.

Then | ran the lysine riboswitch through this program, and | got this. | got the
minimum for energy structure down in the lower left. And then you see there's a lot

of other colored dots. Those are from the suboptimal structures.

So it looks like this thing has multiple structures, which of course it does. So the way
that this one works is, in the absence of lysine, it forms this structure where the
ribosome binding sequences-- this is prokaryotic-- is exposed. And so the ribosome

can enter and translate these lysine biosynthetic enzymes.

But then when lysine accumulates to a certain level, it can interact with the RNA and
shift it's structure so that you now form this stem, which sequesters the ribosome

binding sequence and blocks lysine biosynthesis. So a very clever system.

And it turns out that there's dozens of these things in bacterial genomes, and they
control a lot of metabolism. So they're very important. And there may be some in

eukaryotes, too, and that would be good.

If anyone's looking for a product, not happy with their current project, you might
think about looking for more riboswitches. So I'm going to have to end there. And

thank you guys for your attention, and good luck on the midterm.

33

