Recitation 4-9-14

EF Lectures #14 & 15
Protein Interactions & Gene Networks



Announcements

* Problem Set 4 due next Thursday (April 17)

* Project write-up due Tuesday, April 22



Outline

Experimenta methods to detect protein
Interactions

— Affinity Purification

— Tandem Affinity Purification (TAP)
— Mass Spectrometry

— Yeast two-hybrid

Bayesian Networks

Clustering methods

— Hierarchical clustering
— K-means clustering

Linea Regressio Mutual information



Affinity Purification

- To detect interaction partners of a protein of : @Tag
interest (bait), the bait is tagged by introducing

Bait

Isolate protein
; complex

protein-tag DNA construct into cells. Once the
construct is expressed and incorporated into
cellular complexes, the tag is used to pull down
other interacting proteins,

by Mass Spectrometry.

Affinity
column

- Can do this for every protein to analyze
proteins on a proteome-wide scale.

- Fairly high (~30% for 2002 yeast genome-wide Exciee bands
study) False Positive Rate with single-affinity a pmzi::g pr
purification, but also some False N Proen Srecramary o
known interactors & comple proin's

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Kumar, Anuj, and Michael Snyder. "Proteomics: Protein

Complexes take the Bait." Nature 415, no. 6868 (2002): 123-4.
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http://dx.doi.org/10.1038/415123a

Tandem Affinity Purification (TAP)

-To cut down on false
positives, two affinity pepicie
purification steps

Caimodulin-binding

- However, fewer false

positives likely means more
false negatives

Contarmnant

Gavin et al. (2002) Nature.
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Courtesy of Macmillan Publishers Limited. Used with permission.

Source: Gavin, Anne-Claude, Markus Bosche, et al. "Functional Organization of the

Yeast Proteome by Systematic Analysis of Protein Complexes." Nature 415,

no. 6868 (2002): 141-7.

Protein A binds IgG antibod
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First affinity
column

Second affinity
column

Native elution (EGTA)

Nature Reviews | Molecular Cell Biology

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Huber, Lukas A. "Is Proteomics Heading in the Wrong Direction?"
Nature Reviews Molecular Cell Biology 4, no. 1 (2003): 74-80.

Nature Reviews Molecular Cell Biology 4, 74-80


http://dx.doi.org/10.1038/nrm1007
http://dx.doi.org/10.1038/415141a
http://dx.doi.org/10.1038/415141a

Mass Spectrometry (MS)

* Analytical technique that produces spectra of the masses of
atoms or molecules that comprise a sample

 Works by ionizing chemical compounds to generate charged
molecules & measuring the Vmass—to—charge (m/z) ratio
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Courtesy of The American Society for Pharmacology and
Experimental Therapeutics. Used with permission.

Source: Damsten, Micaela C., Jan NM Commandeur,et al. "Liquid
Chromatography / Tandem Mass Spectrometry Detection of Covalent
Binding of Acetaminophen to Human Serum Albumin." Drug
Metabolism and Disposition 35, no. 8 (2007): 1408-17.
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© Physiological Society Publications. All rights reserved. This content is excluded from our

Creative Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use. I .
Source: Gingras, Anne-Claude, Ruedi Aebersold, et al. "Advances in Protein Complex http.//Jp.physoc.org/content/563/1/11/F1.Iarge.Jpg

Analysis Using Mass Spectrometry." The Journal of Physiology 563, no. 1 (2005): 11-21. 6
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Yeast Two-Hybrid (Y2H)

- Used to detect interactors with your bait protein of interest
- Introduce two plasmids into yeast cells:
- 1. DNA-binding domain (DBD) - Bait fusion (in this case, Snfl is bait)
- 2. Prey - Activator domain (AD) fusion (in this case Snf4 is prey)
- AD needed to recruit Polll for transcription of reporter gene
- Often will screen a library of potential prey molecules
- This example uses the well characterized Gal4 transcription activator protein in yeast.
- lacZ transcription can be detected by colorimetric inspection (can use other reporter
genes such at metabolic enzyme (His production) and growth on minimal media lacking
His)
- Y2H will miss interactions for prey proteins that are not soluble and/or don’t localize to the

nucleus
- But can detect more transient interactions that may not be captured by affinity purification

’ 4 Gal4
| Snf1 | Snf4
- ‘ RNA Pol Il

Transcription

Gal1 UAS ATA lacZ

© American Society for Microbiology. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Source: Stynen, Bram, Héléne Tournu, et al. "Diversity in Genetic in Vivo Methods for Protein-Protein
Interaction Studies: From the Yeast Two-hybrid System to the Mammalian Split-luciferase System."

Microbiology and Molecular Biology Reviews 76, no. 2 (2012): 331-82.
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Bayesian Networks

* |f we have 3 binary variables A, B, C that we can observe, how
many variables do we need to fully specify joint probabilit
P(A=a,B=b,C=c) in the following situtations:

— A,B,C are all independent of each other?

* P(A=a,B=b,C=c) = P,(a) Ps(b)P.(c) 3 parameters (more generally, n forn
binary variables since 1 probability (prob. of ON) needed for each)

— Cannot assume any independencies?

* Need all possible combinations of A,B,C = 23-1 (= 2"-1 for n binary variables
since there are 2" combinations, but last one is determined since all
probabilities must sum to 1)

— The Bayesian network tells us about independencies between
variables, and allows us to factor the joint probability accordingl

* A Bayesian networks is a way of representing a set of random
variables and their conditional dependencies. Consists of:
1. Directed (acyclic) graph over the variables
2. Associated probability distributions:

* Prior probabilities of all root nodes and
* Conditional probabilities of all child nodes given their parents



Bayesian Networks

 The directed graph consists of:
— Nodes = random variables (events)
— Edges indicate dependencies between variables

* Then the distribution of a random variable depends only on its
parent nodes: Parent and child nodes: if there is

directed edge starting from i and
A Bayesian network with 4 nodes  ending atj, then iis a parent of j and
jis a child of i
- C has parent B, B has child C
- A has parents & and D

Root nodes = nodes with no parents
(no incoming edges) — here B and D
Leaf nodes = nodes with no children
—here Aand C

Need the following probabilities to fully specify the model:

- Prior probabilities of all root nodes = P(B) and P(D)

- Conditional prob. of all child nodes given parents = P(C|B) and P(A|B,D)




Independencies in Bayesian Networks

There are 3 types of connections that can occur between a random
variable B and its immediate neighbors A and C:

. Factor P(A,B,C) according to the
Linear independencies indicated in this graph:

P(A,B,C) = P(A)P(B|A)P(C|B)

Are A and C independent if B is unknown?

No —if B is unknown, then knowing A tells
us something about C (through unknown B)

Are A and C independent if B is known?

Yes — if B is known, there is no further
information in A about C

10



Independencies in Bayesian Networks

There are 3 types of connections that can occur between a random
variable B and its immediate neighbors A and C:

Diverging

Example of this:

B is the bias of a coin,
and A and C are the
outcomes of
independent flips of
that coin

Factor P(A,B,C) according to the
independencies indicated in this graph:

P(A,B,C) = P(B)P(A|B)P(C|B)

Are A and C independent if B is unknown?

No —if B is unknown, then knowing A tells
us something about C (through unknown B)

Are A and C independent if B is known?

Yes — if B is known, there is no further
information that A can tell us about C

11



Independencies in Bayesian Networks

There are 3 types of connections that can occur between a random
variable B and its immediate neighbors A and C:

Converging Factor P(A,B,C) according to the
independencies indicated in this graph:

P(A,B,C) = P(A)P(C)P(B|A,C)

Are A and C independent if B is unknown?

Example of this:
A and C are two
independent coin
flips, B checks

whether the resulting
values are the same

Yes — if B is unknown, then knowing A tells
us nothing about C

Are A and C independent if B is known?

No —if B is known, it tells us something
about both A and C, so A and C are no
longer independent

12



Independencies in Bayesian Networks

Converging Given this graph structure, A and C are
marginally independent (e.g. independent
when B is marginalized out):

Need to show that P(A, C) = P(A)P(C)

P(A,C) = P(A, B, C) (marginalize out B)

P(A)P(C)P(B|A,C)

1
= P(A)P(C) Y M

B

|
2] =[]



Bayesian Networks

let this be a Bayesian
Network over 5 binary

@ random variables with
the following
distributions:

P(Ro=1)=0.1
P(Pa=1)=03

Contaminatec N Ro
Reagents ’ '
| 0.1 0.3
P(Ti =1|Ro, Pa) = [0.5 0.9]
0 Ro 1

P(Co=1|Ro) = [0.1 0.5]

P(EF = 1|Ti, Co) = [0'1 0°8]°T-

04 091"



Bayesian Networks

@ P(Ro=1)=0.1
P(Pa=1)=03  ¢Ffo 4

. 0.1 0.3
P(Ti = 1|Ro, Pa) = [0'5 0.9]
o R0 g

P(Co=1|Ro) = [0.1 0.5]
P(EF =1|Ti,Co) = [

0.1 0.8 OTi
0.4 0.9

1
What is the probability that your experiment will fail given that there is a new rotation
student, but there was no party last night? What is P(EF = 1‘R0 =1, Pa = O)?

P(EF =1|Ro=1,Pa=0)= Y P(EF =1,Ti,Co|Ro=1,Pa=0)
T1,Co

From graph — Z P(EF =1|Ti,Co)P(Ti|Ro=1,Pa =0)P(Co|Ro=1)

structure:
T2,Co



Bayesian Networks

@ P(Ro=1)=0.1
P(Pa=1)=0.3 o R0y

. 0.1 0.3
P(Ti = 1|Ro, Pa) = [0'5 0.9]
o R0 g

P(Co=1|Ro) = [0.1 0.5]
P(EF = 1|T%,Co) = [

0.1 o.s]o .

0.4 09]1"

Fromgraph = % * P(EF = 1|T', Co)P(T'i|Ro = 1, Pa = 0)P(Co|Ro = 1)
structure: :
Ti,Co =1-P(Ti=1 | Ro=1,Pa=0) =1-P(<io=1 | Ro=1)

4 possible combinations of {Ti, Co} to sum over. | \ ( |\
. P(EF=1 | Ti=0,C0=0)=0.1, P(Ti=0 | Ro=1,Pa=0)=0.7, P(Co=0 | Ro=1)=0.5

. P(EF=1 | Ti=0,Co=1)=0.8, P(Ti=0 | Ro=1,Pa=0)=0.7, P(Co=1 | Ro=1)=0.5

Likewise for Ti=1,Co=0andTi=1,Co=1

+(0.4)(0.3)(0.5) +(0.9)(0.3)(0.5) =0.51



Learning Bayesian Networks:
parameters for given network

* Given a network structure (vertices and edges) and observations, we can
learn the most likely conditional probabilities (e.g. we know a signaling
pathway from previous experiments, but would like to determine its
probabilities in response to a new stress condition)

— This is an intference task, in contrast to the previous predictive task. Maximum
Likelihood (ML) estimation — based on observed counts

— find parameters (conditional probs.) that maximize the likelihood of the data:

Orir = argmaxP(Datald)

0
— example - given structure and observed counts below for binary vars A and B. _

estimate P(A) and P(B|A): A B n(A,B)
P(A=1) = (4+22)/(15+3+4+22) = 26/44 = 0.59 3 3 e
P(B=1|A=0) = 3/(3+15) =~ 0.167 0 ) 2
P(B=1|A=1) = 22/(22+4) =~ 0.846 : 2 :
e Maximum a posteriori (MAP) 1 L 22

— incorporate prior knowledge P(Q)about how arams T 3 |s(t Sbuted

(da
P(Data)

— Observed counts plus pseudocounts corresponding to prior

Oz, = argmazP(0|data) = argmax
0 0



Learning Bayesian Networks:
network structure

There are way too many possible structures for an exhaustive
approach (e.g. trying every possible structure and calculating
the likelihood of the data given that structure)

Common greedy approach (what Pebl does in Pset 4):

start with a random network

make a small perturbation (e.g. adding or removing an edge) and
rescore network

if network scores higher, accept (otherwise reject change)
repeat from many starting points, pick best one

Simulated Annealing approach:

— similar to above, but accept lower scoring network with some

probability proportional to difference in scores and temperature

— accept with higher probability initially, then “lower” temp gradually

18



Hierarchical Clustering

e Useful when trying to find structure (e.g. clusters
of genes upregulated in repsonse to a stress) in

your data
* Algorithm:
— initialize every point to be its own cluster

— until only 1 cluster left:

e calculate distance between each cluster and all other
clusters : O(N?) for each connection -> O(N3) overall

* find the two closest clusters, merge them into one cluster
» Can use various distance/similarity metrics (e.g.
Euclidean distance, correlation, etc.)

19



Hierarchical Clustering

Let the following be 7 points in a 2-dimensional dataset — we
want to do agglomerative hierarchical clustering on these
points, using Euclidean distance as distance metric

®

® @
® ®

20



Hierarchical Clustering

 (initialization) — initialize each point to be its own cluster

®

6 ® © ©
® ®

Build dendogram as we go to keep track of clusters — initially all nodes of
dendogram are unconnected, connect them as we merge points into clusters

21



Hierarchical Clustering

* (repeat until only 1 cluster left) — calculate distances between
each pair of clusters, merge the two closest into single cluster

@
® @
®

Closest are points 2 and 3 — merge these into a single cluster which we’ll call
Update dendogram:

22



Hierarchical Clustering

* (repeat until only 1 cluster left) — calculate distances between
each pair of clusters, merge the two closest into single cluster

— how do we do this for clusters with more than 1 point?

©)

.
*

+ “centroid @ :
‘ centroid @

Let cluster A contain the set of points i and cluster B contains the set of points j, then the
distance between A and B is:

Option (1): or linkage
Calculate all distances d; between points i in A and all points j in other cluster B, and
consider for single linkage, for complete linkage

Option (2): Centroid linkage
For clusters A and B, compute the “centroid” or geometric center of the points in the

cluster A. and B, and dist(A,B) = dist(A., Bc)



Hierarchical Clustering

* (repeat until only 1 cluster left) — calculate distances between
each pair of clusters, merge the two closest into single cluster

— use centroid linkage

®

N
® ®
Closest clusters are points 4 and 6 — merge these into a single cluster
Update dendogram:

24



Hierarchical Clustering

* (repeat until only 1 cluster left) — calculate distances between
each pair of clusters, merge the two closest into single cluster

— use centroid linkage

Closest clusters are B and 5 — merge these into a single cluster

Update dendogram:
Jljt
| | | [ | \ |
2 3 4 6 2 7

1

25



Hierarchical Clustering

* (repeat until only 1 cluster left) — calculate distances between
each pair of clusters, merge the two closest into single cluster
— use centroid linkage

Closest clusters
areA and 1 - A
merge these into

a single clusterA I—I—I_‘
Update
P 1 |

dendogram:




Hierarchical Clustering

* (repeat until only 1 cluster left) — calculate distances between
each pair of clusters, merge the two closest into single cluster

— use centroid linkage

Closest clusters are A
and 7 — merge

these into a single

cluster I—LI
1 ‘

Update dendogram: i F 3 A B 5 7

27



Hierarchical Clustering

* (repeat until only 1 cluster left) — calculate distances between
each pair of clusters, merge the two closest into single cluster

— use centroid linkage

®

5 ® 9 o
& ®

Only two clusters

left, merge them. —

Update dendogram: r Only one cluster
=y ]J__l_‘ remaining, so we’re

1 . ! 4 T 5 7 done!

28



Hierarchical Clustering

Can always cluster data, get a dendrogram and discover some
“structure” in your data, but interpreting or assigning
meaning to clusters is much more difficult

— clusters may not corresponding to anything biologically meaningful

In contrast to agglomerative (“bottom-up”) clustering shown
thus far, there is also divisive hierarchical clustering (top-
down):

— start with everything in one cluster, then cut the cluster into 2, then
cut those clusters, etc., until you have the desired number of clusters

29



K-means clustering

e Goal: Find a set of k clusters that minimizes
the distances of each point in the cluster to
the cluster’s mean

* You must a priori select k, the number of
clusters to return

* Algorithm:
— For all points X: ™ Repeat unti
* Assign X to the cluster with the closest mean convergence

— (no
— Recalculate the mean of each cluster based on assignments

previous iteration’s assignments o change)

30



K-means clustering example (k=4)
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http://shabal.in/visuals/kmeans/2.html



http://shabal.in/visuals/kmeans/2.html

K-means clustering

Deterministic given:

— 1. Choice of k
— 2. The k starting points for the clusters

For 2: Generally want to run many times with different starting
points to obtain most robust partition

For 1:
— Try many different ks (below and above what you think it might be)

— Intuitively, you should see large decreases in the intra-cluster distance when

uncovering true underlying clusters & smaller decreases when overfitting
400 T T T T T T

8 350 .............

i Big steps occur when we are dividing |
i datainto natural clusters

8 300F\ .

Smaller steps occur
when we are m
overclustering

32



K-means clustering

Deterministic given:
— 1. Choice of k
— 2. The k starting points for the clusters

For 2: Generally want to run many times with different starting
points to obtain most robust partition

For 1:
— Try many different ks (below and above what you think it might be)

— Intuitively, you should see large decreases in the intra-cluster distance when
uncovering true underlying clusters & smaller decreases when overfitting

— Decision can be made automatically through frameworks such as Bayesian
Information Criterion (BIC — penalizes addition of more free parameters;
accepts model (i.e., k) that optimizes a tradeoff between increased likelihood
of data from more clusters and increased number of free parameters)

33



Variations on K-means clustering

* Fuzzy k-means:

— Rather than hard assignments (assigning each point to
strictly 1 cluster), give soft assignments u;; (y; ;) for all
points 1<i<N, clusters 1<j<K

* Constraintis > m;=1
. Consider these soft assignments when recalculating the

cluster means: ){7 B Zf\%& e
D i1 Mij
 k-medioids: restrict ourselves to the actual data
points

— Rather than the mean (which likely doesn’t
correspond exactly to any data point), have the
cluster center be the data point closest to the mean

34



Regression-based modeling

Relevant if you assume a number of variables

(e.g. transcription factors) have independent
linear effects

V=2 B X e

tel, ’E
Expression of B, . effect of TF t
target gene g on target gene g

B;>0: Transcription factor t positively regulates gene g
B;.<0: Transcription factor t negatively regulates gene g

Often, we only want to consider TFs with a large impact on
gene expression definitely above noise, so we set a minimum
threshold for B or maximum number of nonzero B (other
shrinkage methods possible)

35



Nonlinear effects on gene expression

 Mutual information between pairs of gene
expression measurements can detect
complex, nonlinear regulatory relationships

— Feed forward loops s

— Cooperativity (multiple subunits to dimerize or
multimerize before functional activity)

36
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