6.874 Recitation

3-7-13
DG Lectures 8 + Topic Models



Announcements

* Project specific aims due Sunday
— Look at NIH examples

e Pset #2 due in 1 week (03/13)

— For problem 2B, Matlab and Mathematica use a
(1-p) parameterization in contrast to lecture slides

(p):

e RorN =11/k (same as in lecture slides)

k A
eP= A+ 1 for Matlab/Mathematica vs. 1 in
Kk A+ =
lecture slides k

— Mean dispersion function problem




RNA-Seq Analysis

e Central Dogma: DNA = mRNA = protein

— pre-mRNA contains not only protein coding exons, but non-
coding regions: 5’- and 3’-UTR, introns, poly(A) tail

— Introns must be spliced out to create mature mRNA that can
be translated into protein

— Some exons may also be spliced out (alternative splicing to
create different mRNA isoforms of the same gene)
pre-mRNA

5" UTR Exon Intron Exon Intro Exon 3" UTR

© source unknown. All rights reserved. This content is excluded from our Creative
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e We'd like to know what mRNA isoforms of gene are
present in cells


http://ocw.mit.edu/help/faq-fair-use/

RNA-Seq Analysis — Alternative Splicing

e Central Dogma: DNA =» mRNA =»protein

— some exons may also be spliced out (alternative
splicing to create different mRNA isoforms of the
same gene)
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Courtesy of Elsevier B.V. Used with permission.

Source: Aoki-Suzuki, Mika, Kazuo Yamada, et al. "|A Family-based
|Association Study and Gene Expression Analyses of Netrin-G1 and-G2
[Genes in Schizophrenia." Biological Psychiatry 57, no. 4 (2005): 382-93.


http://dx.doi.org/10.1016/j.biopsych.2004.11.022
http://dx.doi.org/10.1016/j.biopsych.2004.11.022
http://dx.doi.org/10.1016/j.biopsych.2004.11.022
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RNA-seq: identifying isoforms

- Some reads map completely within a single exon — don’t directly tell us which isoforms are
present, although expression levels of different exons can be helpful (e.g. twice as many exon
1 reads compared to exon 4 — probably some isoforms that include exon 1 but not exon 4)

Non-junction
spanning reads

——— _
[ exon2 ] exon 3 exon 4 =~ genome seq

putative exons

- How do we directly identify the isoforms that generated these reads? Look
at junction-spanning reads!

- Assuming exons 1 and 4 must be included, which isoform(s) are consistent
with the following reads?
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RNA-seq: identifying isoforms

- Some reads map completely within a single exon — don’t directly tell us which isoforms are
present, although expression levels of different exons can be helpful (e.g. twice as many exon
1 reads compared to exon 4 — probably some isoforms that include exon 1 but not exon 4)

Non-junction
spanning reads

——— _
[ exon2 ] exon 3 exon 4 =~ genome seq

putative exons

- How do we directly identify the isoforms that generated these reads? Look
at junction-spanning reads!

- Since reads are generally 100bp or shorter, most reads only span 1
junction to give adjacent exons present in isoforms — assembling the full
isoforms of 5-10+ exons and estimating their expression levels from only
adjacent exon pairs is difficult

- Promise in longer read (kb) technologies (e.g. Pacific Biosciences,
Oxford Nanopore sequencing)



DEseq

we would like to know whether, for a given region (e.g. gene, TF binding
site, etc.), an observed difference in read counts between different
biological conditions is significant

assume the number of reads in sample j that are assigned to region i is
approx. distributed according to the negative binomial:
2
Kij ~ NB(pij,05;)
the NB has two parameters, which we need to estimate from the data,

but typically the # of replicates is too small to get good estimates,
particularly for the variance for region i

if we don't have enough replicates to get a good estimate of the
variance for region i under condition p(j,) DEseq will pool the data from
regions with similar expression strength to try to get a better estimate

we then test for significance using a LRT
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DEseq

the Likelihood Ratio Test is the ratio of the probability under the null
model and the alternate model

for example, if we are testing for whether there is significant difference
in counts in condition A relative to B, we calculate:

P(K, 4| Hy) P((Kop|H,)
P(K;a, Kip|Ho)

for H_a, we allow the distribution of /1, 4 and /A ; ;3 to be different,
while under H_0 we assume that[{mj I, are drawn from the same

distribution (e.g. isoform I is identically expressed under conditions A
and B)

T; = 2log

then T _j follows a Chi Square distribution withdf=4-2=2
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Hypergeometric Test: when you want to know if
overlap between two subsets is significant

- From DESeq, we identified genes differentially expressed between
control and treatment after treatment with two different stress
conditions: (A) heat shock and (B) oxidative stress

- We propose that the pathways involved in the responses to A and B
are similar, so the genes affected by A might overlap with the genes
affected by B
- We observe the following: N=500

Na =100

N = total # of genes measured = 500
Na = total # genes changed in A =100
Nb = total # genes changed in B = 150
k = genes changed in both Aand B =40

Is this overlap significant (e.g. unlikely by
chance)?
-> do a hypergeometric test

Nb = 150

© source unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see pttp://ocw.mit.edu/help/faq-fair-use/.
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Hypergeometric Test

The probability of observing exactly k items =0

overlapping among Na and Nb size groups - Na =100
drawn from N total items is

Pinm 0~ B2

Our p-value is the probability of observing an
overlap at least as extreme as the overlap we
Obse rved (Wthh |S k): © source unknown. All rights reserved. This content is

excluded from our Creative Commons license. For more
max vaIue fOF k (smaller set information, see pttp://ocw.mit.edu/help/fag-fair-use/.

completely contained within

larger set) T min(na,nb)
Plx > k) = Z P(i;nq, 15, N)
1=k

Nb = 150



http://ocw.mit.edu/help/faq-fair-use/
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Hypergeometric Test

For this example, we obtain: LT
Na = 100
100
P(xz > 40) = » ~ P(i;100, 150, 500)
1=40

100 100 500— 100)

2 : 150—1
o 500

1=40 150)

Nb = 150

© source unknown. All rights reserved. This content is
p— O . O 1 1 2 excluded from our Creative Commons license. For more

information, see http://ocw.mit.edu/help/fag-fair-use/.

Therefore, with a = 0.05, we reject the null hypothesis that the overlap
between conditions A and B are due to random chance, suggesting there

is some similarity between gene expression changes caused by heat shock
and oxidative stress


http://ocw.mit.edu/help/faq-fair-use/
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Colour key

ey {79 :
2 02 4y hESCs Female Male GO categories

1 Negative transcription regulation,

|l
sax differentiation

2 Negative transcription regulation,
homeobox, cell death

4 Cytoskeleton, transcription
regulation, embryonic morphogenesis

9 Immuné résponse, cell migration

6 Meiosis, cocyte development

DMNA repair

8 Homeobox, meiosis,
spermatogenasis, germ plasm,

anterior-posterior batlem

10 Macromolecule biosynthetic
process, RNA processing/splicing,

actin cytoskedeton organization

11 Cell morphogenesis, neuron/
muscle differentiation, nucleosome
organization, mitosis

12 Tight junction, hormone stimulus
résponse, ion transpon, céll cycle
process, homeobox

13 Regulation of apoptosis, nuclear
lumen, protein complex biogenesis

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Gkountela, Sofia, Ziwei Li, et al. "[The Ontogeny of cKIT+ Human Primordial Germ Cells Proves
ko be a Resource for Human Germ Line Reprogramming, Imprint Erasure and in Vitro Differentiation."

Nature Cell Biology 15, no. 1 (2013): 113-22.


http://dx.doi.org/10.1038/ncb2638
http://dx.doi.org/10.1038/ncb2638

PCA identifies the directions (PC1 and PC2)
along which the data have the largest spread

y o

P X

© source unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see |http://ocw.mit.edu/help/faq—fair—use/.

-15t principal component is the direction of maximal variation among your sample
- Magnitude of this component is related to how much variation there is in this direction

-2 principal component is next direction (orthogonal to 1%t direction) of remaining maximal
variation in your sample
- Magnitude of this component will be smaller than that of 15t

etc.
15
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PCA identifies the directions (PC1 and PC2)
along which the data have the largest spread

-Each principal component gets d

smaller —this is why

summarizing data with first 2
or 3 components is an OK first

approximation of data

- This example: first 2

components retain 22% of total

variance;

63 components retain 90% of

variance
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Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Ringnér, Markus. "What is Principal Component Analysis?"
Nature Biotechnology 26, no. 3 (2008): 303-4.

http://www.nature.com/nbt/journal/v26/n3/pdf/nbt0308-303.pdf


http://www.nature.com/nbt/journal/v26/n3/pdf/nbt0308-303.pdf
http://dx.doi.org/10.1038/nbt0308-303

Topic Models

Figure 1. The intuitions behind latent Dirichlet allocation. We assume that some number of “topics,” which are distributions over words,
exist for the whole collection (far Left). Each document is assumed to be generated as follows. First choose a distribution over the topics (the

histogram at right); then, for each word, choose a topic assignment (the colored coins) and choose the word from the corresponding topic.
The topics and topic assignments in this figure are illustrative—they are not fit from real data. See Figure 2 for topics fit from data.
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© The ACM. All rights reserved. This content is excluded from our Creative Commons license. For more

information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Blei, David M. "Probabilistic Topic Models." Communications of the ACM 55, no. 4 (2012): 77-84.
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Topic Models

documents topics

documents

Qt

9w|z |

words
words
topics

© Psychology Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq—fair—use/.
Source: Landauer, Thomas K., Danielle S. McNamara, eds. "Handbook of Latent Semantic Analysis." Psychology Press, 2013.
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Figure 2. Illustration of the generative process and the problem of statistical inference underlying topic
models
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Topic Models

Figure 2. Real inference with LDA. We fit a 100-topic LDA model to 17,000 articles from the journal Science. At left are the inferred
topic proportions for the example article in Figure 1. At right are the top 15 most frequent words from the most frequent topics found

in this article.
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information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Blei, David M. "Probabilistic Topic Models." Communications of the ACM 55, no. 4 (2012): 77-84.
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Single Topic Model

e Assume word drawn from a single topic

w ~ Multinomial(é), where 6, > 0, Z g, =1

* Probability assigned to a document

P(d) = [] 0w =] 0"

wEed w

n,, (d) = # of times word w occurs in document d



Multiple Topics

 Each word is now attributed to a topic, z
z ~ Multinomial(6)
 Words are now generated according to a topic
specific distribution
w ~ Multinomial(6,)
* Probability assigned to a document is now

i Ao (d)
P(d) =[] (Z 99)
z=1

w
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© Psychology Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Landauer, Thomas K., Danielle S. McNamara, eds. Handbook of Latent Semantic Analysis. Psychology Press, 2013.
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Estimation: EM-algorithm

e Estimate the parameters by maximizing the
log-likelihood of the observed data

. (d°) T

S - X .
ZlogP(dt) = Zlog H(Zgiewz)

= Zznu (d") log (Ze* wlz )

=1 v
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* E-step:
P(z|w,t)

n(z|t)

EM-algorithm
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Z n“"(dt)P(Z"w: t) topic usage in document t

topic for a word w in document t

5
T
_ t how many times topic z is used
nw(d) P(2|w,?) with word w across documents
i=l
n(z|t)
Zf,_. ?'1.( ! ‘I‘) documents topics

A —

documents
t (9 ‘
0

© Psychology Press. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Landauer, Thomas K., Danielle S. McNamara, eds. Handbook of Latent
Semantic Analysis. Psychology Press, 2013.
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The number of topics

e |f the EM algorithm succeeds finding a good
solution in each case, the log-likelihood of the
good solution should be higher than worse

solutions

# of param
o

log(NV)

BIC-score = log-likelihood of data —

s

# of independent # of “data points”

parameters in the topic model
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Topic Models

e Expression programs - sets of co-expressed

genes orchestrating normal or pathological
processes

Text Analysis Molecular Biology

Word Expression for a particular gene

Document Expression for all genes in a particular
experiment (cell type)

Topic Regulatory Program

Length of document = # of genes profiled
The higher the expression of a gene the more times it occurs in the documents
Examples of topics = immune response, stress response, development, apoptosis
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Single-cell RNA-seq

Bulk cell RNA-seq only captures average behavior of millions of cells,
but individual cells in the population can have different behavior

Solution: single-cell RNA-seq

Instead of taking an aliquot of millions of cells to prepare a library, first sort single
cells into wells and then do each library prep on each individual cell

Each cell has its own 6nt barcode in adapter; can then pool libraries from multiple
cells together to sequence on one flow cell

Caveats:

Library prep with such little starting RNA from 1 cell is technically very challenging

Much more likely that random sampling during library prep will produce strong
biases, further amplified by PCR

For example, if a transcript is very lowly expressed, you might have only one or a
few molecules in your single cell RNA sample - easily lost due to stochastic
sampling during library prep

Hard to interpret “negative” results of a gene or isoform not being expressed —is it
actually not expressed in the cell, or did you just lose it during library prep?
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