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Announcements  

• project specific aims due in a little more 
than a week (March 7) 

• Pset #2 due March 13, start early! 
• Today: 

– library complexity 
– BWT and read mapping 
– de Bruijn graphs 
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Library Complexity  
•	 You isolate DNA from your sample of interest (genomic 

DNA, ChIP-seq, cDNA from RNA-seq, etc.) 
•	 You go through a protocol to generate a “library” of size-

selected molecules (e.g. 200-300bp for paired-end
genomic DNA sample, much smaller from ChIP-seq, etc.) 
–	 Library is only a subset of your original sample – some 

molecules have been lost due to:  
• 1. Stochastic sampling (molecules w/ low count are often lost) 
• 2. Systematic exclusion at steps of the library prep. protocol 

•	 The number of UNIQUE molecules in your library is
known as “library complexity”, C (total # of molecules T is 
>> C due to PCR amplification during library prep.) 

•	 The number of sequencing reads you get back is N (<T 
since only a subset of reads in the library cluster on the
flow cell and are sequenced) 
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Library Complexity: Naïve approach  
•	 Assume each unique molecule is represented equally in the library 

–	 Not a terrible assumption for genomic DNA (but still not true due to PCR 
amplification bias) 

–	 Definitely not a true for ChIP-seq, RNA-seq, etc. in which most frequent
molecules in the sample (millions of copies) will have certain fragments
represented multiple times in the library even after random fragmentation 

–	 Each molecule has prob. 1/C of being sequenced. You sequence N total 
molecules, with M UNIQUE molecules in your sequencing run (M < N) 

•	 # times each molecule in the library sequenced follows a Poisson distribution with mean
(= variance): N

A	 = 
C 

• P(observing a molecule in sequencing output) =1 – P(sequencing the read 0 times) = 
1 -A

�

x -A

�

0
e	 e -A

X 
= 1- = 1- e

x!	 0! 
x=1 

ˆ •	 Maximum likelihood estimate of C is C : 
M

ˆM = C ⇥ P (observing a molecule) =) C = 
1	 - e-A 

•	 Note that our formula for estimating C involves λ, but λ=N/C (it’s a function of what we’re 
trying to estimate!). So this Poisson formula is not as simple as it appears…would likely
want to perform iterative estimation of these parameters. 
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Library Complexity: Naïve  
approach  

•	 Testing this against real data (e.g. subsampling) reveals the assumption 
(each unique molecule is represented equally in the library) is totally off! 

–	 Again, due to: 1. Stochastic sampling of sample molecules into library 
–	 2. Original highly expressed molecules are represented multiple times 
–	 3. PCR amplification bias of some molecules 

•	 Thus, λ is not the same for every molecule, and we should allow it to vary 
- This motivates using the Negative Binomial (2 parameters) instead of the 
Poisson (1 parameter) 

•	 Negative binomial distribution models an overdispersed Poisson 
distribution: useful when the variance > mean (they’re equal in Poisson). 

–	 The dispersion is k (this needs to be fit to data) 
–	 Higher k  more over-dispersed library  more “biased” library and further 

deviation from assumption that each unique molecule is represented equally 
–	 Note that there are different parameterizations of the Negative Binomial: In terms 

of (λ and k) or (r and p) in lecture slides, as well as whether r is the desired 
success or the last failure. See http://www.johndcook.com/negative_binomial.pdf 

- Use Wikipedia/Matlab/WolframAlpha for Problem Set 
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Short read alignment (mapping)  
• Motivation: Common sequencing experiments:

~100 million 100bp reads to align to a billion base
pair genome 

• Naïve (“ctrl-F” search) method of taking a read 
and searching the entire genome: 
– O(genome size = 1 billion) per read (without indels)  
– For all reads: O(1 billion x 200 million) – infeasible!  
– Ideally, something that approaches O(# of reads) –  

approximately independent of the size of genome  
• We do this through BWT transform and FM index 

of genome 
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Why use the BWT?  

we have grouped together 
rotations of our "genome" by 
their suffixes, and stored 
information about this ordering 
(the BWT) 

e.g. all the rotations beginning with 
"n with" are grouped together 

© Digital Equipment Corporation. All rights reserved. This content is�excluded�from our

Creative Commons license. For more information,�see http://ocw.mit.edu/help/faq-fair-use/.

Source: Burrows, Michael, and David J. Wheeler. "A Block-sorting Lossless

Data Compression Algorithm." (1994).
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$BANANA 
A$BANAN 
ANA$BAN 
ANANA$B 
BANANA$ 
NA$BANA 
NANA$BA 

 

 

 

 

 

 

BWT and character rank  
notice that each column and each 
row of the BW-matrix contains 
every letter from the input string 

rank? 
1 
1 
2 
3 
1 
1 
2 

rank? 

$BANANA A 1 
A$BANAN N 1 
ANA$BAN N 2 
ANANA$B B 1 
BANANA$ $ 1 
NA$BANA A 2 
NANA$BA A 3 

Burrows Burrows 
Wheeler Wheeler 
matrix transform 

- what do we mean by a character's  
rank in a column?  

- the rank of a specific character qc is  
the number of qcs above it in the  
column, +1  

- note that (for example) the "A" of  
rank 2 in the last column (BWT) and  
first column are the same lexical  
occurrence (the A preceded by  
"BAN" and followed by "NA")  

- this lets us distinguish between the  
different "A" characters that occur in  
different contexts in the original string:  

BANANA 
rank in BWT? 3 2 1 

- so, chars in the First and Last columns 
have the same rank 
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Last to First (LF) function  
LF(i, qc) = occ(qc) + count(i, qc) 

returns the index of the char in the First column that is lexically 
equivalent to the instance of qc in position i of the BWT, using the 
fact that rank is same in First and Last columns 

occ(qc) = # characters lexically smaller than qc 
in the BWT (e.g. rank in First column of matrix) 

idx BWT count(i,qc) = # of qc characters before position i 
0 $ B A N A N A in the BWT (e.g. rank of qc character at position i, 

minus 1)1 A $ B A N A N  
2 A N A $ B A N  

In other words, since the first column is3 A N A N A $ B alphabetical, we first find the row where our
4 B A N A N A $ character starts in the First column (e.g. Ns begin
5 N A $ B A N A at index 5), then use the fact that rank is same in 
6 N A N A $ B A first and last column to find the specific char in First 

col that is the same lexical occurrences as our 
query in the BWT 
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Using the BWT and LF function to 
do exact matching 

•  say we have the following sequence:  $ABBABA, and we want 
to find occurrences of BBA 

•  using the BW-matrix, we can start by finding all rows 
beginning with "A" 

but, we're only interested 
in rows where the A is 
preceded by a B 

and now, we only want 
suffixes where the B is 
preceded by another B 

Once we know where our 
matches to our query begin inTo make this clearer, we showed the entire 
the BWT, use LF to get these BW matrix. But how to do this if we only 
locations in original stringhave the BWT? 

- use the LF function! http://www.cs.jhu.edu/~langmea/resources/lecture_notes/bwt_and_fm_index.pdf 
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Using the BWT and LF function to 
do exact matching 

•  say we have the following sequence:  $ABBABA, and we want 
to find occurrences of BBA 

•  using the BW-matrix, we can start by finding all rows 
beginning with "A" 

but, we're only interested 
in rows where the A is 
preceded by a B 

http://www.cs.jhu.edu/~langmea/resources/lecture_notes/bwt_and_fm_index.pdf
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Using the BWT and LF function to do exact matching 

2 
4 

  

  

  

1) at end of loop, calculate range = bot – top 
- if range == 1: 

exactly one match at top 
- if range = n > 1: 

n matches of query at top to bot-1 
- if range == 0:

query does not exist in genome

in our case, there are exactly two
occurrences of "ANA" in "BANANA" 

2) how can we find the location of our matches in the original string? 
- use LF function to walk back to the beginning of the string, 
starting at the beginning of the identified match (= top) 
- count # of times we "walk left" until hitting the end of string 
 char ($) to get the hit offset 
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Find location of our match  

- let's find the location of one of the two matches we found, 
corresponding to location 2 in the BWT: 
- use LF to "walk back" from the beginning the match 
("top") until we see the end-of-string character "$" 

 pseudocode: 


i = top 
 
 
 
 
 
# final value of 'top' after matching
 

offset = 0
 

while BWT[i] != "$":
 

 
offset += 1
 

 
i = LF(i, BWT[i])
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Find location of our match  
let's find the location of one of the two matches we found, 
corresponding to location i=2 in the BWT: 

 - use LF to "walk back" until we see the end-of-string char "$" 
 - obtain hit offset = 3 B A N A N A 
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Regenerating your string from its 
BWT 

same as using LF to walk-back to the beginning of the string and 
get the hit offset, except you start from the end 

 - by definition, BWT[0] is the last character of original string 
i = 0

str = ""

while bwt[i] != "$":



str = bwt[i] + str


i = LF(i, bwt[i]) 

iter 0
0 A i = 0 
1 N str = 
2 N 
3 B 
4 $ 
5 A 
6 A 

:   iter 1:   iter 2:   iter 3:   
str = BWT[0] + str str = BWT[1] + str str = BWT[5] + str 

""      = "A"      = "NA"      = "ANA" 
i = LF(0, "A") = 1 i = LF(1, "N") = 5 i = LF(5, "A") = 2 

iter 4:   iter 5:   iter 6:   
BWT[4] str = BWT[2] + str str = BWT[6] + str str = BWT[3] + str 
== "$"      = "NANA"      = "ANANA"      = "BANANA" DONE  

7 i = LF(2, "N") = 6 i = LF(6, "A") = 3 i = LF(3, "B") = 4 
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Some caveats 
•  how to calculate occ(qc) and count(i,qc) when the genome is huge? 

–  for occ(qc), need only to know where each character in the genome 
begins, for example as a dictionary in python: 

   occ = {"A": 1, "C": 345, "G": 768, "T": 981} 
 means there is only 1 char ("$") lexigraphically smaller than "A", there are 
345 smaller than "C", 768 smaller than "G" etc. 

–  count(i,qc) is trickier – naïvely, you could store for each ACGT a genome-
length array containing count(i, qc) at location i, but these would be huge!  
Instead, store counts for only a subset of positions, then count # of qcs 
between i and closest stored count 

•  similarly, the method we showed for recovering the offset of a match using the 
LF function requires "walking back" to the beginning of the string – quite a long 
time, using a whole genome! 
–  naïvely again, could keep genome-length mapping of BWT to original string 

indices -> lookup table 
–  since genome is huge, instead store indices for every ith row 

Together, these improvements comprise the FM-index 
19



Genome Assembly (“shotgun sequencing”) 

•  First sequencing of human genome 
–  De novo assembly of sample from field work 

•  This is in contrast to most experiments in labs these 
days in which you generally are mapping your 
sequenced reads to the known reference genome of 
yeast, C. elegans, mouse, human, etc. 

•  May be situations in which you don’t do full genome 
assembly but partial assembly for reads that don’t map 
to reference genome to discover, for example, 
translocations, inversions, etc. in cancer tumor 
samples 

•  Longer reads and more depth is better, but limited by: 
–  Experimental cost 
–  Errors in longer reads (higher errors from bases ~50 

onward) 

20



Two main approaches 
•  Overlap layout consensus (string graph) 

– Plus: Retain entire read and its long-range 
position implications 

– Drawback: computationally expensive / slow 
•  de Bruijn graph 

–  Plus: Computationally more tractable 
–  Minus: 

•  Graphs get messy (bubble, tips) and must use 
heuristics to trace path through graph 

•  Lose longer-range position information: have 100bp 
reads and k=30 

ose the fact that these two 
mers are separated by 40bp 

-L
30
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Overlap graph 
•  Each node is a read 

–  Directed edge is overlap between suffix of that read to prefix of 
another read (overlap at least length l) 

–  Also include reverse complements of reads since we only 
sequence 1 of 2 strands of DNA 

CTCTAGGCC GCCCTCAAT
%%%%%%||| %%%%%||||
%%%%%%GCCCTCAAT %%%%%CAATTTTT

–  To assemble the genome, we would ideally find the shortest 
http://www.langmead-lab.org/teaching-materials/

common superstring 
•  This is the shortest string that contains all relationships implied by the 

overlap graph from all of the reads 
•  Finding a “Hamiltonian path” (traveling salesman problem) to visit all of 

the nodes: turns out this is too complex of a problem to solve 
•  Greedy methods that will find not the shortest but close to shortest 

(bounded by ~2.5x shortest) 
–  Greedy method makes the locally optimal choice at each step but doesn’t look 

any further ahead to take steps that may lead to overall better solutions in the end 
–  Even if it were tractable, one problem with this approach is that 

finding the shortest common superstring will collapse repeats 
longer than your overlap 

Overlap graph

Below: overlap graph, where an overlap is a su!x/pre"x match 
of at least 3 characters

A vertex is a read, a directed edge is an overlap between su!x of 
source and pre"x of sink

Vertices (reads): { a: CTCTAGGCC, b: GCCCTCAAT, c: CAATTTTT  }

Edges (overlaps): { (a, b), (b, c) }

To keep our presentation uncluttered we will not show the 
treatment of read reverse complements
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Overlap graph 
•  To simplify the graph, can remove edges that provide no additional 

information 1

http://www.langmead-lab.org/teaching-materials/

•  This produces contigs of consecutive sequence: each contig 
corresponds to a clear path through part of the graph 

Layout

Picture gets clearer after removing some transitively-inferrible 
edges

Layout

Emit contigs corresponding to the non-branching stretches

http://www.langmead-lab.org/teaching-materials/
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From overlap graphs  de Bruijn 
graphs 

Overlap graphs: each kmer is a node 
– Would like to visit each node once to assemble a 

version of the genome 
•  Hamiltonian path through the graph 

– However, this very hard (NP-hard) and 
computationally does not scale to large genomes 

de Bruijn graphs: each kmer is an edge 
–  In contrast, the problem of visiting each edge 

once to assemble a version of the genome is 
computationally tractable 

•  Eulerian path through the graph 

• 

• 

24



de Bruijn graph 

•  Choose k smaller than read length L 
– Tradeoff: 

•  Smaller k loses more long-range information for 
repetitive regions and could create spurious overlaps if 
too small. 

•  But too large k could eliminate edges between truly 
adjacent regions of genome if there are sequencing 
errors and/or low coverage of region. 

•  Empirically, k is usually in 60s 
•  k is odd so that no read is its reverse complement 

(middle base cannot be same in read and reverse 
complement) 
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de Bruijn graph 
•  Choose k smaller than read length L 

– Each read has L-k+1 kmers 
•  For each of these kmers, consider its 
two (k-1)mers (prefix and suffix) 
•  These (k-1)mers are the nodes of the graph 
•  Connect the prefix (k-1)mer node to the 
suffix (k-1)mer node with a directed arrow 

•  The edges are kmers from the input reads 
–  If a kmer is present in multiple times in your reads, can draw 

one arrow weighted with the number of occurrences of that 
kmer in all of the reads 
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de Bruijn graph 

•  Although computationally tractible, still are 
practical problems 
– Graph can have multiple walks through the 

graph; only one corresponds to true path 
– Gaps in coverage lead to disconnected graph 

(can only assemble two contigs) 
– Differences in coverage can lead to different # 

of incoming and outgoing arrows 
– Errors in reads 
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de Bruijn graph post-processing 

•  Before traversing the graph: 
– Simplify chains 
– Trim off ‘dead-end’ tips 
– Pop bubbles 
– Clip short, low-coverage nodes 
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de Bruijn graph post-processing 

•  Before traversing the graph: 
– Simplify chains 

•  Collapse two nodes (or sets of nodes), one with only 1 outgoing 
arrow and the other with only 1 incoming arrow, into one longer 
node 

The&graph&can&be&compressed&by&
simplifying&chains&of&nodes&

CTC CGA 

GGA CTG 

TCC CCG 

GGG TGG 

AAG AGA GAC ACT CTT TTT 

AAGA& GACT& CTTT&

CTCCGA&

CTGGGA&

AAGA& GACT& CTTT&

CCGA&

GGGA&

CTCC&

CTGG&

Figure&adapted&from&presentaQon&by&Michael&Schatz&



de Bruijn graph post-processing 

•  Before traversing the graph: 
Simplify chains 
– Trim off ‘dead-end’ tips 

•   Tip: short chain of nodes that is disconnected on one 
end 

•  Caused by sequencing errors in read 

Pop bubbles 
Clip short, low-coverage nodes 

Graph&topology&based&error&eorrecQon&
–  Errors&at&end&of&read&

•  Trim&off&‘deadEend’&Qps&

&
–  Errors&in&middle&of&read&

•  Pop&Bubbles&
&

&
&

–  Chimeric&Edges&
•  Clip&short,&low&coverage&nodes&

B*&A& C&

B&

B’&

A& C&

B&A&

D&

B&A&

B&

B’&

A&

C&

B&A&

D&C&

x&

Figure&adapted&from&presentaQon&by&Michael&Schatz&

Graph&topology&based&error&eorrecQon&
–  Errors&at&end&of&read&

•  Trim&off&‘deadEend’&Qps&

&
–  Errors&in&middle&of&read&

•  Pop&Bubbles&
&

&
&

–  Chimeric&Edges&
•  Clip&short,&low&coverage&nodes&

B*&A& C&

B&

B’&

A& C&

B&A&

D&

B&A&

B&

B’&

A&

C&

B&A&

D&C&

x&

Figure&adapted&from&presentaQon&by&Michael&Schatz&



de Bruijn graph post-processing 

Before traversing the graph: 
Simplify chains 
Trim off ‘dead-end’ tips 
– Pop bubbles 

•  Bubble:  two paths that are redundant by starting and 
ending at the same nodes and contain similar 
sequences 

•  Caused by sequencing error or biological variation 
•  More complicated heuristics of how to pop them; for 

our purposes, manually inspect for sequencing error 
and pop 

Clip short, low-coverage nodes 

• 
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de Bruijn graph post-processing 

•  Before traversing the graph: 
Simplify chains 
Trim off ‘dead-end’ tips 
– Pop bubbles 

Clip short, low-coverage nodes 

An&example&of&bubble&removal&

GACTGG ACTGGG 

GGACTC GGGACT 

TGGGAC CTGGGA 

GACTCC 

ACTGGT CTGGTG TGGTGG GGTGGG GTGGGA 

GACTGG ACTGGG 

GGACTC GGGACT 

TGGGAC CTGGGA 

GACTCC 

If more reads support bottom path of 
bubble 



de Bruijn graph post-processing 

•  Before traversing the graph: 
Simplify chains 
Trim off ‘dead-end’ tips 
Pop bubbles 
– Clip short, low-coverage nodes 

•  Low coverage means they’re probably erroneous 

Graph&topology&based&error&eorrecQon&
–  Errors&at&end&of&read&

•  Trim&off&‘deadEend’&Qps&

&
–  Errors&in&middle&of&read&

•  Pop&Bubbles&
&

&
&

–  Chimeric&Edges&
•  Clip&short,&low&coverage&nodes&

B*&A& C&

B&

B’&

A& C&

B&A&

D&

B&A&

B&

B’&

A&

C&

B&A&

D&C&

x&

Figure&adapted&from&presentaQon&by&Michael&Schatz&



de Bruijn graph 

•  Although some information is lost in de 
Bruijn graphs, they are fast and simple 
– Most commonly-used assemblers are de 

Bruijn graph-based 

Nature Biotech primer on de Bruijn graphs: 
http://www.cs.ucdavis.edu/~gusfield/cs225w12/deBruijn.pdf
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