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Separate 6.874 recitation

e Teaching duties shared with Charlie + 1 guest lecture

e Cover extra Al material in recitation
e Usually topics complementing lecture
e Extra problem set/exam problems
e 6.874 will start exams early

e Other recitation sections will review lecture



Reminders

* Pset 1 posted — due Feb 20t (no Al problem)

* Pset 2 posted soon — Due Mar 13th
* Programming problem

e Python tutorial — Feb 10t (Monday) 4-5pm.

* Project interests due — Feb 11th
* Name, program, previous experience, interest in computational biology
o We'll post these next week for you to find groups for project

e Office hours posted soon



Today: Statistics Review/Multiple Testing

* Basic probability: motif representation/scanning
* Basic statistics

 Multiple hypothesis testing in context of motif scanning
e Bonferroni/Benjamini-Hochberg

Nature Biotechnology 27, 1135 - 1137 (2009)
doi:10.1038/nbt1209-1135

How does multiple testing correction work?
William S Noblel



Minimal biology review

e DNA is composed of 4 nucleotides: A, C, G, T
e DNA is transcribed into mRNA which is translated into protein
e A gene is a said to be expressed when it is transcribed

e Transcription factors (TF) are proteins that bind DNA and affect
(promote/repress) gene expression

* A DNA sequence motif can be a sequence where specific TFs bind
(others too — eg. splicing signals for mRNA)



DNA sequence motif representation

e Proteins (TFs) bind to motifs that are not fully specified
* Consensus sequence: TCGAACATATGTTCGA

e Collection of k-mers:
e TCGAACATATGTTCGA
e TCGAAAATATGTTCGA
e TAGAACATATCTTCGA ...

* Probabilistic model (PWM/PSSM)



Position Weight Matrix (PWM)

e Proteins (TFs) bind to motifs that are not fully specified

e Matrix of probabilities

e Each column (position) is a multinomial distribution over the nucleotides —

sumsto 1l

e Each column (position) is independent of other columns
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Aside: How to get a PWM?

e Motif finding on ChlP-seq data for a particular TF

0 5 10 15 20 25 30 35 40 45

TCTCATCCGGTGEGAATCACTGCCGCATTTGGAGCATARACARTGGEGEEE
TACCGAAGCACAAACACTTTAGAGCTAATGEARACACAACCGGCGCATAAR
ATACARACGARRGCGAGRAGCTCGCAGAAGCATGGGAGTGTARATAAGTG
GGCGCCTCATTCTCGGTTTATARGCCARRACCTTGTCGAGGCARCTGTCA
TCAAATGATGCTAGCCGTCGGAATCTGECCAGTGCATARARACAGTCAAC



S =GCAA
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What do we do with PWM?

e Evaluate probability that a sequence was generated by the motif
(does this TF bind this sequence?) S = GCAA

P(S|M) =0.4 x 0.25 x 0.1 x 1.0 = 0.01

1 2 3 4
A 0.6 0.25 0.1 1
G 0.4 0.25 0.1 0
T 0 0.25 0.4 0
C 0 0.25 0.4 0



What do we do with PWM?

e Evaluate probability that a sequence was generated by the motif
(does this TF bind this sequence?) S = GCAA

P(S|M)=0.4%x0.25x0.1x1.0=0.01
e Evaluate probability that a sequence was generated by background
P(S|B) =0.4 x0.4x0.1x0.1=0.0016

1 2 3 4 A 0.1
A 0.6 0.25 0.1 1 G 0.4
G 0.4 0.25 0.1 0 T 0.1
T 0 0.25 0.4 0 C 0.4
C 0 0.25 0.4 0
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What do we do with PWM?

e Using Bayes’ rule compute posterior probability that motif generated
the sequence
e Assume prior probability of P(M) =.1
 P(S|M) =0.01; P(S|B) =.0016 (from previous slide)

_ P(SIM) xP(M) P(S|M) x P(M)
P(MIS) = P(S) ~ P(S|B)P(B) + P(S|M)P(M)
0.01 x 0.1
= 0.41

~ 0.0016 X 09 + 0.01 X 0.1
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Assigning significance

* We just scanned to test if one sequence was an instance of a motif
e ....3 billion to go
e Like BLAST example in lecture — slide it along the genome

e Out of these 3 billion, how do we decide which ones we think are
bound?



Nature Biotechnology example

b Position Str Sequence Score

19390631 + TTEACCARCCACGSCGOGCDS 26,30

a 32420108 + CTEOOCACCACASOGCAGCE  26.30
27910537 - COGTACCOOCTECTEOTORG 26,18

21968106 + GTEACCACCAGEGEGOAGOA 25,81

31409358 - COGGOCTOCAGEEGEOGCTC  25.56

19128218 - TEECECCACCTECTGETCAC  25.44

21854623 + CTOOCCACCACASGOCAGES 2495

123654805 + COOGOCAGCAGAGGGRAGCOG 24.71

13406383 + CTAGOCACCAGGTGGOGETGE 24.71

18813020 + COOGOCAGCAGAGGERAGIDG 24,71

31980801 + ACGOOCAGCAGEGGGOGCCG 24,71

32909754 - TGEECTCCOOCTGGUGEOCEE  24.71

25683654 + TCGGOCACTAGGOGECACTA  24.58

31116990 - GGUCGCCACCTTSTGOOCAS 24.58

- T A 29615421 - CTCTOCCOTCTERTARCTE. 24,46
- GOP4ARG + STTOOCACCRGASGSSCACTA 2446

s %‘? JOWLEL Al }T%T?"f"c 26610753 -  CACTGCCCTCTGCTIGGCCCA 24,34
""""" - 26912731 - GGEUSCCACCTESECEETCAC  24.34

20448267 ¥ CTECOCACCREGEEGEECAGOE 24,22

21872506 - TOGCOCCACCTGOCGOCAGT 24.22

Courtesy of Macmillan Publishers Limited. Used with permission.
ource: Noble, William S. "How does Multiple Testing Correction
Work?." Nature Biotechnology 27, no. 12 (2009): 1135.


http://dx.doi.org/10.1038/nbt1209-1135
http://dx.doi.org/10.1038/nbt1209-1135

Null distribution

 How biologically meaningful are

h 5 b Position Str Sequence Score
t e Se S CO re S . 19390631 4 TTCSAICASCRECOECOOIDS  26.30
32420106 + CTEOOCACCREASEECAGCA 26,30

- H 27910537 - COGTACCOOCTRCTRATORG 26,18

e Assess probability that a 21968106+  GTOACCACACGOGGCAGA 268
. 31400358 + CoEGCCTCCAGEEGEEOGECTC 25,56

pa rt|CU|ar Score WOUId Occur by 19128218 - TGECECCACCTECTGETCAC 25,44

d h 21854623 + CTEGOCAGCAGASGCECAGES 24,85

12363895 + COOGUCAGCAGAGGGAGCOCG 24.71

ra n O m C a n Ce 13406383 + CTAGOCACCAGGTGGOGETS 24.71

. . . 18613020 + COOGOCAGCAGAGGGAGIDG 2471

i HOW |Ik€|y IS |t that 20 a ndom 31980801 - ACGOOCAGTAGESGEOGCDe 2471

. 32909754 - TGGECTOCLOCTGEOGEoCEE 2471

n UCIEOUdes WOUId matCh CTCF 2h083654 + TCCOOCADTACCOCGOACTA 24,58

. 31116990 - GOCC3CCACCTTOTGOONRS 24,58

m Ot If? 29615421 - CTCTOCCOTOTEATERCTEC 24,46

GO2P4389 + GTTGOCACCAGASGGCACTA  24.46

26610753 = CACTSCCOTOTECTSSOO A 24.34

26912731 = GUECSCCACCTESCEoTCRC 24,34

20446267 4 CTGCOCACCAGEEGECAGOE 24,22

21872506 - TOEO3CCACCTEECE0CAGC 24,22

Courtesy of Macmillan Publishers Limited. Used with permission.
ource: Noble, William S. "How does Multiple Testing Correction
Work?." Nature Biotechnology 27, no. 12 (2009): 1135.


http://dx.doi.org/10.1038/nbt1209-1135
http://dx.doi.org/10.1038/nbt1209-1135
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Null distribution

* Empirical null
e Shuffle bases of chr21 and rescan
e Any high scoring CTCF instances occur due to random chance, not biology
e Histogram of scores in empirical null distribution

C b Pasition Str Sequence Score
0.03 , 19390631 + TTCACCACCACCOCCOCCCOG  26.30
Empinzal null 32420108 + CTEGCCAGCAGAGGEACAGCA  26.30

27910537 - CAGTACCOCCTECTGRTORG  26.18

0.025 21968106 * GTEACCACCAGGOGGCAGCA 25,81
31409358 + CEGGoCTCCAGEREGEOGCTC 25,56

19128218 = TGGCGCCACCTGCTGETCAC 25,44

= 002 | 21854623 + CTGGCCAGCAGAGGGCAGGG  24.95
- 12364895 + CCOGUCAGCAGAGGEAGCOG 24.71
E 0,015 | 13406383 + CTAGCCACCAGETEGEOGETG 24.71
£ 18613020 - COCGOCAGCAGAGGGRAGODG 24,71
" 31980801 - ACGODCAGCAGESGGCGoOG 24,71
.01 329049754 - CCTGGUGELCGE 2471
25683654 s ACTA 24,58

N 31116990 - GGCCGCCACCT GOCOCRG  24.58

00035 29515421 - CTCTACCOTCTEOTEROTEC 24,46
6024389 + GTTGOCACCRGAGEGOACTA  24.45

0 266810753 - CACTSCCCOTCTECTGGOOCA  24.34
26912791 - GEECSCCACCTEECEETCAC  24.34

-100  -80 -60 -40 =20 0 20 20446267 + CTGCCCACCAGEEGEGCAGOG 24,22

Seara 21872506 - TEGECICCACCTGOCGOCARC 24.22

Courtesy of Macmillan Publishers Limited. Used with permission.
ource: Noble, William S. "How does Multiple Testing Correction
Work?." Nature Biotechnology 27, no. 12 (2009): 1135.


http://dx.doi.org/10.1038/nbt1209-1135
http://dx.doi.org/10.1038/nbt1209-1135
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P-value

* Probability that a score at least as large as the observed score would occur
in the data drawn according to the null hypothesis

e P(S>2630)=———=15 x 108
68 million
eP(S>17) =—2——-55 x 10~
68 million

e Compare to confidence threshold
e a=0.010r0.051

e Analytical null

0.02

Empinzal null

0.025 -

002+

0.05 |

Frcpumancy
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0.005 |

o
=100 80 -60 40 =20 0 20
Seare

Courtesy of Macmillan Publishers Limited. Used with permission.

Source: Noble, William S. 'lHow does Multiple Testing Correction
Work?." Nature Biotechnology 27, no. 12 (2009): 1135.


http://dx.doi.org/10.1038/nbt1209-1135
http://dx.doi.org/10.1038/nbt1209-1135
http:�=0.01or0.05
http:PS>26.30

18

Multiple testing problem

e P-values are only valid when a single score is computed — we are
computing 68 million (or 3 billion!)

e Even though P(S > 17) = 5.5 X 10~ 7is a small p-value, the large
number of tests makes it more likely that a significant score could
occur by random chance alone
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Multiple testing example

e Coin is biased if in 10 flips it landed heads at least 9 times

* Null hypothesis that coin is fair

e P(fair coin would come up heads at least 9 out of 10 times) =.0107
 We want to test 100 coins using this method

e P(all 100 fair coins are identified as fair) =

http://en.wikipedia.org/wiki/Multiple_comparisons


http://en.wikipedia.org/wiki/Multiple_comparisons
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Multiple testing example

e Coinis biased if in 10 flips it landed heads at least 9 times

* Null hypothesis that coin is fair

* P(fair coin would come up heads at least 9 out of 10 times) = (10 + 1) x (1/2)1°=0.0107
e Very unlikely. We would reject null hypothesis - coin is unfair

* We want to test 100 coins using this method
e Given above probability, flipping 100 fair coins ten times each to see a pre-selected coin

come up heads 9 or 10 times would still be very unlikely

e But, seeing any coin behave that way, without concern for which one, would be more

likely than not

» P(all 100 fair coins are identified as fair) = (1 - 0.0107)1%° = 0.34
e Application of our single-test coin-fairness criterion to multiple comparisons would be

more likely to falsely identify at least one fair coin as unfair

http://en.wikipedia.org/wiki/Multiple_comparisons


http://en.wikipedia.org/wiki/Multiple_comparisons
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Bonferroni correction

e Simple method

* Makes each individual test more stringent

e Controls family-wise error rate (FWER)

e FWER is the probability of at least one false rejection

* In order to make the FWER equal to at most a, reject Hy; if p; <

e M is number of tests performed

2|



Table 18.5 summarizes the theoretical outcomes of M hypothesis tests.
Note that the family-wise error rate is Pr(V > 1). Here we instead focus

TABLE 18.5. Possible outcomnes from M hypothesis tests. Note that V is the
number of false-positive tests; the type-1 error rate s E(V ) /My. The type-1I error
rate ts E(T')/M;, and the power s 1 — E(1')/M;.

Called Called
Not Significant | Significant | Total
Hy True U Vv My
Hy False T 3 My
Total M—-R R M
on the false discovery rate
FDR = E(V/R). (18.43)

The Elements of Statistical Learning
© Springer-Verlag. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Hastie, Trevor, Robert Tibshirani, et al. “The Elements of Statistical Learning.”
New York: Springer-Verlag 2, no. 1 (2009).


http://ocw.mit.edu/help/faq-fair-use/
http://statweb.stanford.edu/~tibs/ElemStatLearn/

Bonferroni correction applied to CTCF motif

Can be useful if M is relatively small, but for large M it is too conservative - calls
too few significant

o = 0.05

Bonferroni adjustment deems only p <

0.01
68x106

= 1.5 x 10~ 1%ignificant

Lower than smallest observed p-value

No scores are significant

With Bonferroni, oc = 0.01 means we can be 99% sure that NONE of the scores
would be observed by chance when drawn according to the null hypothesis

* Relax —instead let’s control the percentage of scores drawn according to the null
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Controlling the False Discovery Rate (FDR)

e Expected proportion of tests that are incorrectly called significant,
among those that are called significant

Table 18.5 summarizes the theoretical outcomes of M hypothesis tests.
Note that the family-wise error rate is Pr(V > 1). Here we instead focus

TABLE 18.5. Possible outcomes from M hypothesis tests. Note that V is the
number of false-positive tests; the type-1 error rate is E(V ) /My. The type-1I error

rate is E(T') /My, and the power is 1 — E(T') /M.

Called Called
Not Significant | Significant | Total
Hy True U V My
Hy False T S M,
Total M—-R R M

on the false discovery rate

FDR = E(V/R).

© Springer-Verlag. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq—fair—use/.
Source: Hastie, Trevor, Robert Tibshirani, et al. “The Elements of Statistical Learning.”

Verlag 2, no. 1 (2009).

(18.43)

The Elements of Statistical Learning


http://ocw.mit.edu/help/faq-fair-use/
http://statweb.stanford.edu/~tibs/ElemStatLearn/
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Controlling the False Discovery Rate (FDR)

e # null scores = 17 (blue)

* S = 35 e
. see Observed scores
 # observed scores = 17 (red) oo “Empirical nul
* Sops1=219 e
o et
E
2 20, _ & 79
N Snulllz 6.7%1 E Je-06 355189 =6.7%

Sobs1 2808

e This computes FDRs from scores et

e Use Benjamini-Hochberg to .
compute FDR from p-values

Seara

Courtesy of Macmillan Publishers Limited. Used with permission.
ource: Noble, William S. "How does Multiple Testing Correction
Work?." Nature Biotechnology 27, no. 12 (2009): 1135.


http://dx.doi.org/10.1038/nbt1209-1135
http://dx.doi.org/10.1038/nbt1209-1135
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Benjamini-Hochberg (BH)

Algorithm 18.2 Benjamini-Hochberg (BH) Method.

1. Fix the false discovery rate o and let pi1y < pay < --- < piary denote
the ordered p-values

2. Dehine

L:mm:{j : B "’:ﬂ"%}- (18.44)

3. Reject all hypotheses Hy; for which p; < p(py. the BH rejection
threshold.

© Springer-Verlag. All rights reserved. This content is excluded from our Creative The Elements of Statistical Learning

Commons license. For more information, see http://ocw.mit.edu/help/faq—fair—use/.
Source: Hastie, Trevor, Robert Tibshirani, et al. “The Elements of Statistical Learning.”
New York: Springer-Verlag 2, no. 1 (2009).


http://ocw.mit.edu/help/faq-fair-use/
http://statweb.stanford.edu/~tibs/ElemStatLearn/
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Benjamini-Hochberg (BH)

5*10/=3
|

p—valua
5" 0"=4
|

5*104=5
|

1 3 10 20 100

5*10"=6
|

Genes ordered by p—value The Elements of Statistical Learning

© Springer-Verlag. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Hastie, Trevor, Robert Tibshirani, et al. “The Elements of Statistical Learning.”
New York: Springer-Verlag 2, no. 1 (2009).


http://ocw.mit.edu/help/faq-fair-use/
http://statweb.stanford.edu/~tibs/ElemStatLearn/

Multiple testing problems in biology

e Massive scale of recent biology creates opportunities for spurious
discoveries

e Scanning a genome for occurrences of transcription factor binding
sites

 Searching a protein database for homologs of a query protein/BLAST
search

e |dentifying differentially expressed genes from microarray/RNA-seq
* Genome-wide association studies
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Remember!

* Pset 1 posted — due Feb 20t (no Al problem)

* Pset 2 posted soon — Due Mar 13th
* Programming problem

e Python tutorial — Feb 10t (Monday) 4-5pm.

* Project interests due — Feb 11th
* Name, program, previous experience, interest in computational biology
o We'll post these next week for you to find groups for project

e Office hours posted soon
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