6.874/... Recitation 1

Courtesy of an MIT Teaching Assistant.

Separate 6.874 recitation

- Teaching duties shared with Charlie + 1 guest lecture
- Cover extra Al material in recitation
 - Usually topics complementing lecture
 - Extra problem set/exam problems
 - 6.874 will start exams early
- Other recitation sections will review lecture

Reminders

- Pset 1 posted due Feb 20th (no Al problem)
- Pset 2 posted soon Due Mar 13th
 - Programming problem
- Python tutorial Feb 10th (Monday) 4-5pm.
- Project interests due Feb 11th
 - Name, program, previous experience, interest in computational biology
 - We'll post these next week for you to find groups for project
- Office hours posted soon

Today: Statistics Review/Multiple Testing

- Basic probability: motif representation/scanning
- Basic statistics
- Multiple hypothesis testing in context of motif scanning
 - Bonferroni/Benjamini-Hochberg

Nature Biotechnology **27**, 1135 - 1137 (2009) doi:10.1038/nbt1209-1135

How does multiple testing correction work?

William S Noble

1

Minimal biology review

- DNA is composed of 4 nucleotides: A, C, G, T
- DNA is transcribed into mRNA which is translated into protein
- A gene is a said to be expressed when it is transcribed
- Transcription factors (TF) are proteins that bind DNA and affect (promote/repress) gene expression
- A DNA sequence motif can be a sequence where specific TFs bind (others too – eg. splicing signals for mRNA)

DNA sequence motif representation

- Proteins (TFs) bind to motifs that are not fully specified
- Consensus sequence: TCGAACATATGTTCGA
- Collection of k-mers:
 - TCGAACATATGTTCGA
 - TCGAAAATATGTTCGA
 - TAGAACATATCTTCGA ...
- Probabilistic model (PWM/PSSM)

Position Weight Matrix (PWM)

- Proteins (TFs) bind to motifs that are not fully specified
- Matrix of probabilities
 - Each column (position) is a multinomial distribution over the nucleotides sums to 1
 - Each column (position) is independent of other columns

Aside: How to get a PWM?

• Motif finding on ChIP-seq data for a particular TF

0 5 10 15 20 25 30 35 40 45
TCTCATCCGGTGGAATCACTGCCGCATTTGGAGCATAAACAATGGGGGG
TACGAAGGACAACACTTTAGAGGTAATGGAAACACACCGGCGCATAAA
ATACAAACGAAAGCGAGAGCTCGCAGAAGCATGGAGTGTAAATAAGTG
GGGCCTCATTCTCGGTTTATAAGCCAAAACCTTGCGAGCAACTGTCA
TCAAATGATGCTAGCCGTCGGAATCTGGCGAGTGCATAAA

S = GCAA

	1	2	3	4
Α	0.6	0.25	0.1	1
G	0.4	0.25	0.1	0
Т	0	0.25	0.4	0
С	0	0.25	0.4	0

What do we do with PWM?

 Evaluate probability that a sequence was generated by the motif (does this TF bind this sequence?)
 S = GCAA

$$P(S|M) = 0.4 \times 0.25 \times 0.1 \times 1.0 = 0.01$$

	1	2	3	4
Α	0.6	0.25	0.1	1
G	0.4	0.25	0.1	0
Т	0	0.25	0.4	0
С	0	0.25	0.4	0

What do we do with PWM?

 Evaluate probability that a sequence was generated by the motif (does this TF bind this sequence?)
 S = GCAA

$$P(S|M) = 0.4 \times 0.25 \times 0.1 \times 1.0 = 0.01$$

Evaluate probability that a sequence was generated by background

$$P(S|B) = 0.4 \times 0.4 \times 0.1 \times 0.1 = 0.0016$$

	1	2	3	4
Α	0.6	0.25	0.1	1
G	0.4	0.25	0.1	0
Т	0	0.25	0.4	0
С	0	0.25	0.4	0

Α	0.1
G	0.4
Т	0.1
С	0.4

What do we do with PWM?

- Using Bayes' rule compute posterior probability that motif generated the sequence
 - Assume prior probability of P(M) = .1
 - P(S|M) = 0.01; P(S|B) = .0016 (from previous slide)

$$P(M|S) = \frac{P(S|M) \times P(M)}{P(S)} = \frac{P(S|M) \times P(M)}{P(S|B)P(B) + P(S|M)P(M)}$$

$$= \frac{0.01 \times 0.1}{0.0016 \times 0.9 + 0.01 \times 0.1} = 0.41$$

Assigning significance

- We just scanned to test if one sequence was an instance of a motif
 - 3 billion to go
 - Like BLAST example in lecture slide it along the genome
- Out of these 3 billion, how do we decide which ones we think are bound?

Nature Biotechnology example

Position	Str	Sequence	Score
19390631	+	TTGACCAGCAGGGGGGCGCCG	26.30
32420105	+	CTGGCCAGCAGAGGGCAGCA	26.30
27910537	-	CGGTGCCCCCTGCTGGTCAG	26.18
21968106	+	GTGACCACCAGGGGGCAGCA	25.81
31409358	+	CGGGCCTCCAGGGGGGCGCTC	25.56
19129218	-	TGGCGCCACCTGCTGGTCAC	25.44
21854623	+	CTGGCCAGCAGAGGGCAGGG	24.95
12364895	+	CCCGCCAGCAGAGGGAGCCG	24.71
13406383	+	CTAGCCACCAGGTGGCGGTG	24.71
18613020	+	CCCGCCAGCAGAGGGAGCCG	24.71
31980801	+	ACGCCCAGCAGGGGGGCGCCG	24.71
32909754	-	TGGCTCCCCCTGGCGGCCGG	24.71
25683654	+	TCGGCCACTAGGGGGCACTA	24.58
31116990	-	GGCCGCCACCTTGTGGCCAG	24.58
29615421	-	CTCTGCCCTCTGGTGGCTGC	24.46
6024389	+	GTTGCCACCAGAGGGCACTA	24.46
26610753	-	CACTGCCCTCTGCTGGCCCA	24.34
26912791	-	GGGCGCCACCTGGCGGTCAC	24.34
20446267	+	CTGCCCACCAGGGGGCAGCG	24.22
21872506	-	TGGCGCCACCTGGCGGCAGC	24.22

Courtesy of Macmillan Publishers Limited. Used with permission. ource: Noble, William S. "How does Multiple Testing Correction Work?." *Nature Biotechnology* 27, no. 12 (2009): 1135.

b

Null distribution

- How biologically meaningful are these scores?
- Assess probability that a particular score would occur by random chance
 - How likely is it that 20 random nucleotides would match CTCF motif?

b	Position	Str	Sequence	Score
	19390631	+	TTGACCAGCAGGGGGGCGCCG	26.30
	32420105	+	CTGGCCAGCAGAGGGCAGCA	26.30
	27910537	-	CGGTGCCCCCTGCTGGTCAG	26.18
	21968106	+	GTGACCACCAGGGGGCAGCA	25.81
	31409358	+	CGGGCCTCCAGGGGGGCGCTC	25.56
	19129218	-	TGGCGCCACCTGCTGGTCAC	25.44
	21854623	+	CTGGCCAGCAGAGGGCAGGG	24.95
	12364895	+	CCCGCCAGCAGAGGGAGCCG	24.71
	13406383	+	CTAGCCACCAGGTGGCGGTG	24.71
	18613020	+	CCCGCCAGCAGAGGGAGCCG	24.71
	31980801	+	ACGCCCAGCAGGGGGGCGCCG	24.71
	32909754	-	TGGCTCCCCCTGGCGGCCGG	24.71
	25683654	+	TCGGCCACTAGGGGGCACTA	24.58
	31116990	-	GGCCGCCACCTTGTGGCCAG	24.58
	29615421	-	CTCTGCCCTCTGGTGGCTGC	24.46
	6024389	+	GTTGCCACCAGAGGGCACTA	24.46
	26610753	-	CACTGCCCTCTGCTGGCCCA	24.34
	26912791	-	GGGCGCCACCTGGCGGTCAC	24.34
	20446267	+	CTGCCCACCAGGGGGCAGCG	24.22
	21872506	-	TGGCGCCACCTGGCGGCAGC	24.22

Courtesy of Macmillan Publishers Limited. Used with permission. ource: Noble, William S. "How does Multiple Testing Correction Work?." *Nature Biotechnology* 27, no. 12 (2009): 1135.

Null distribution

- Empirical null
 - Shuffle bases of chr21 and rescan
 - Any high scoring CTCF instances occur due to random chance, not biology
 - Histogram of scores in empirical null distribution

Courtesy of Macmillan Publishers Limited. Used with permission. ource: Noble, William S. "How does Multiple Testing Correction Work?." *Nature Biotechnology* 27, no. 12 (2009): 1135.

P-value

 Probability that a score at least as large as the observed score would occur in the data drawn according to the null hypothesis

•
$$P(S > 26.30) = \frac{1}{68 \text{ million}} = 1.5 \times 10^{-8}$$

•
$$P(S > 17) = \frac{35}{68 \text{ million}} = 5.5 \times 10^{-7}$$

- Compare to confidence threshold
 - $\alpha = 0.01 \text{ or } 0.051$
- Analytical null

Courtesy of Macmillan Publishers Limited. Used with permission. Source: Noble, William S. "How does Multiple Testing Correction Work?." *Nature Biotechnology* 27, no. 12 (2009): 1135.

Multiple testing problem

- P-values are only valid when a single score is computed we are computing 68 million (or 3 billion!)
- Even though $P(S > 17) = 5.5 \times 10^{-7}$ is a small p-value, the large number of tests makes it more likely that a significant score could occur by random chance alone

Multiple testing example

- Coin is biased if in 10 flips it landed heads at least 9 times
- Null hypothesis that coin is fair
- P(fair coin would come up heads at least 9 out of 10 times) = .0107
- We want to test 100 coins using this method
- P(all 100 fair coins are identified as fair) =

Multiple testing example

- Coin is biased if in 10 flips it landed heads at least 9 times
- Null hypothesis that coin is fair
- P(fair coin would come up heads at least 9 out of 10 times) = $(10 + 1) \times (1/2)^{10} = 0.0107$
- Very unlikely. We would reject null hypothesis coin is unfair
- We want to test 100 coins using this method
- Given above probability, flipping 100 fair coins ten times each to see a *pre-selected coin* come up heads 9 or 10 times would still be very unlikely
- But, seeing any coin behave that way, without concern for which one, would be more likely than not
- P(all 100 fair coins are identified as fair) = $(1 0.0107)^{100} \approx 0.34$
- Application of our single-test coin-fairness criterion to multiple comparisons would be more likely to falsely identify at least one fair coin as unfair

http://en.wikipedia.org/wiki/Multiple comparisons

Bonferroni correction

- Simple method
- Makes each individual test more stringent
- Controls family-wise error rate (FWER)
- FWER is the probability of at least one false rejection
- In order to make the FWER equal to at most α , reject H_{0j} if $p_j \leq \frac{\alpha}{M}$
 - M is number of tests performed

Table 18.5 summarizes the theoretical outcomes of M hypothesis tests. Note that the family-wise error rate is $\Pr(V \ge 1)$. Here we instead focus

TABLE 18.5. Possible outcomes from M hypothesis tests. Note that V is the number of false-positive tests; the type-I error rate is $E(V)/M_0$. The type-II error rate is $E(T)/M_1$, and the power is $1 - E(T)/M_1$.

	Called	Called	
	Not Significant	Significant	Total
H_0 True	U	V	M_0
H_0 False	T	S	M_1
Total	M-R	R	M

on the false discovery rate

$$FDR = E(V/R). \tag{18.43}$$

The Elements of Statistical Learning

© Springer-Verlag. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Hastie, Trevor, Robert Tibshirani, et al. "The Elements of Statistical Learning." New York: Springer-Verlag 2, no. 1 (2009).

Bonferroni correction applied to CTCF motif

- Can be useful if M is relatively small, but for large M it is too conservative calls too few significant
- $\alpha = 0.05$
- Bonferroni adjustment deems only $p < \frac{0.01}{68 \times 10^6} = 1.5 \times 10^{-10} {\rm significant}$
- Lower than smallest observed p-value
- No scores are significant
- With Bonferroni, α = 0.01 means we can be 99% sure that NONE of the scores would be observed by chance when drawn according to the null hypothesis
- Relax instead let's control the percentage of scores drawn according to the null

Controlling the False Discovery Rate (FDR)

 Expected proportion of tests that are incorrectly called significant, among those that are called significant

> Table 18.5 summarizes the theoretical outcomes of M hypothesis tests. Note that the family-wise error rate is $Pr(V \ge 1)$. Here we instead focus

TABLE 18.5. Possible outcomes from M hypothesis tests. Note that V is the number of false-positive tests; the type-I error rate is $E(V)/M_0$. The type-I error rate is $E(T)/M_1$, and the power is $1 - E(T)/M_1$.

	Called Not Significant	Called Significant	Total
H_0 True	\overline{U}	V	M_0
H_0 False	T	S	M_1
Total	M-R	R	M

on the false discovery rate

$$FDR = E(V/R). \tag{18.43}$$

The Elements of Statistical Learning

© Springer-Verlag. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Hastie, Trevor, Robert Tibshirani, et al. "The Elements of Statistical Learning." Verlag 2, no. 1 (2009).

Controlling the False Discovery Rate (FDR)

- # null scores ≥ 17 (blue)
 - $s_{null1} = 35$
- # observed scores ≥ 17 (red)
 - $s_{obs1} = 519$
- $\frac{s_{null_1}}{s_{obs_1}} = 6.7\%1$
- This computes FDRs from scores
- Use Benjamini-Hochberg to compute FDR from p-values

Courtesy of Macmillan Publishers Limited. Used with permission. ource: Noble, William S. "How does Multiple Testing Correction Work?." *Nature Biotechnology* 27, no. 12 (2009): 1135.

Benjamini-Hochberg (BH)

Algorithm 18.2 Benjamini-Hochberg (BH) Method.

- 1. Fix the false discovery rate α and let $p_{(1)} \leq p_{(2)} \leq \cdots \leq p_{(M)}$ denote the ordered p-values
- 2. Define

$$L = \max \left\{ j : p_{(j)} < \alpha \cdot \frac{j}{M} \right\}. \tag{18.44}$$

3. Reject all hypotheses H_{0j} for which $p_j \leq p_{(L)}$, the BH rejection threshold.

© Springer-Verlag. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Hastie, Trevor, Robert Tibshirani, et al. "The Elements of Statistical Learning." New York: Springer-Verlag 2, no. 1 (2009).

The Elements of Statistical Learning

Benjamini-Hochberg (BH)

The Elements of Statistical Learning

© Springer-Verlag. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Hastie, Trevor, Robert Tibshirani, et al. "The Elements of Statistical Learning." New York: Springer-Verlag 2, no. 1 (2009).

Multiple testing problems in biology

- Massive scale of recent biology creates opportunities for spurious discoveries
- Scanning a genome for occurrences of transcription factor binding sites
- Searching a protein database for homologs of a query protein/BLAST search
- Identifying differentially expressed genes from microarray/RNA-seq
- Genome-wide association studies

Remember!

- Pset 1 posted due Feb 20th (no Al problem)
- Pset 2 posted soon Due Mar 13th
 - Programming problem
- Python tutorial Feb 10th (Monday) 4-5pm.
- Project interests due Feb 11th
 - Name, program, previous experience, interest in computational biology
 - We'll post these next week for you to find groups for project
- Office hours posted soon

7.91J / 20.490J / 20.390J / 7.36J / 6.802J / 6.874J / HST.506J Foundations of Computational and Systems Biology Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.