Lecture 7
ChIP-seq Analysis
Irreproducible Discovery Rate (IDR) Analysis

Foundations of Computational Systems Biology
David K. Gifford



Transcription factors regulate gene expression

© 'Emw on wikipedia. Some rights reserved. License: CC-BY-SA. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Transcription factors are proteins that bind to specific DNA
sequences and act as molecular switches (Pit1 shown)

Humans have ~2000 gene regulators.


http://ocw.mit.edu/help/faq-fair-use/
http://en.wikipedia.org/wiki/Pituitary-specific_positive_transcription_factor_1#mediaviewer/File:Protein_POU1F1_PDB_1au7.png

Gene Regulation: DNA -> RNA -> Protein

Regulators Gene

Protein

What are the gene regulators that control gene expression?
At what genes do these regulators operate?



Gene regulatory networks provide key insight into
cellular function

Transcriptional regulatory network
information will:

Activators

‘reveal how cellular processes
are connected and coordinated

*suggest new strategies to

manipulate phenotypes and

combat disease
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Courtesy of Richard Young. Used with permission.




ChlIP-seq data reveals where TFs bind to the genome

Regulators Gene
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Crosslink
proteins to
binding sites
in living cells

ChlP-seq protocol

Harvest cells
and fragment
DNA

Enrich for protein-
bound DNA
fragments with
antibodies
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Sequence
ChiP DNA

Sequence
whole cell
extract
(WCE) DNA
(control)



A binding event produces a distribution of reads
around its site
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Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Kharchenko, Peter V., Michael Y. Tolstorukov, et al. "IDesign and Analysis of ChIP-seq
Experiments for DNA-binding Proteins." Nature biotechnology 26, no. 12 (2008): 1351-9.
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Data from two binding events
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The spatial distri
Improve spatia
de-convo

pution of reads can be used to

resolution of prediction and
ve joint binding events

\
1 | = W
) ) — A
I [ 1 g ]
’_ - / . )
! —\ / P =}
L P —_— —T / / -* ‘
R P o A
‘— — _II
! I/
| o -
\ [ ! .
| [ ChIP-Seq reads are independently
\

generated from a set of spatially
/ discrete binding events



GPS addresses the challenges
in ChlP-Seq analysis

Actual binding sites
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ChIP DNA are Model the spatial
randomly fragmented distribution of the reads
Mixture of Reads Construct a mixture
from different events model

Courtesy of Wang and Zhang. Licensed CC-BY.
Source: Wang, Xi, and Xuegong Zhang. "Pinpointing Transcription Factor Binding Sites from ChIP-segData with
|SeqSite." BMC Systems Biology 5, no. Suppl 2 (2011): S3.
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GPS estimates the spatial distribution of the reads
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GPS estimates the spatial distribution of the reads

N
-y
/ \

—
-

I_
/ \
!

-‘

\
! -|
4 \

r, ! =y i
I "_ -—

‘ ==
b.

|

p(ri|bj) = p(rilzij = 1) = emp((—~1)"(ri — b}))

ri: a read at position r; S, = 0 for forward strand
bj: a binding event at position b; = 1 for reverse strand

emp(d): the empirical spatial distribution
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GPS probabilistically models ChIP-Seq read
spatial distribution using a mixture model
(single-base resolution)

M Possible
events

N Observed r,
reads

Likelihood of N M M
observed reads p(R | 777) =11 E JTmP(i’n Im), E JT, = 1
n=1 m=1 m=1

Prob. of event m
Mixing prob. %



N M M
Likelihood of
o:oseelrvzzl r:ads p(R | ~77f) = ‘ | E mp(r ) Eﬂ’m =1
n=1 m=I m=1

Read assignment is latent

g(Zn = m) =] Read n came from event m T = arg max p(R | ]T)

g( Zn = m) 0 Read n did not come from T

event m

Expectation-Maximization (EM) algorithm with component elimination

E step M step
(Z _m)_ mp(r |m) ,7%}2?: MNm
E ﬂm'p(rn | m') Em'=1 N’"'
m'=1

Nm = E;jz\il’y(zn = m)

y (z,=m) : the fraction of read N_, : the effective number of
n assigned to event m reads assigned to event m
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Expectation-Maximization (EM) algorithm with component elimination

Initialization Strength of binding event at end
1
ﬂj:ﬁ Nm=21]1V=IY(Zn =m)

N,, : the effective number of
reads assigned to event m

Expectation-Maximization (EM) algorithm with component elimination

E step M step
er (rn m) A (i N
7(z, =m) = — ol | 7z ’”

! Eﬁﬁ Nm'

2‘7Tm'p(rn |m') N
=l Nm =En=1y(zn =m)

y (z,=m) : the fraction of read N, : the effective number of
n assigned to event m reads assigned to event m
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Synthetic data, EM, no prior
(events at 500 and 550 bp)
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GPS deconvolves homotypic events and
Improves spatial accuracy
chrd x 100
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Example of a predicted joint CTCF event that
contains coordinately located CTCF motifs



N M M
Likelihood of
o:oseelrvzzl r:ads p(R | ~77f) = ‘ | mp(r ) Eﬂ’m =1
n=1 m=I m=1

A sparse prior on mixture components (binding events)

|
p() ]1 —,a>0
s (ﬂ'm) (Figueiredo and Jain, 2002)

Expectation-Maximization (EM) algorithm with component elimination

E step M step
7, p(r, | m) 20 _ max(0, N, —a)
r(z, =m) = i E max(0, N, —a)
Eﬂm'p(rn|m') m'=l
m'=1
N, = En=1}/(zn =m)
y (z,=m) : the fraction of read N, : the effective number of

n assigned to event m reads assigned to event m
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Synthetic data, EM, sparse prior
(events at 500 and 550 bp)
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Mixing probability

chr8x 100
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GPS deconvolves homotypic events and
Improves spatial accuracy
chrd x 100
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chri4 x 1,000
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We compute a p-value with a binomial test for
significance

Null Model —

F(k,n,P) - Probability n-k reads observed in IP channel by chance with k
reads observed in control. P = 0.5 equal chance reads occurred in
control and IP channels for null model.

K]
Flk.n.P)=>" (7) P'(1— p)n=D

[=0

k: scaled control read count
n: total count of IP and scaled control reads
P: probability that reads occur from IP data, P = 0.5.
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We determine significant events by Benjamini
Hochberg at a desired false discovery rate (FDR)

Benjamini-Hochberg correction

Count

Rank

Q — value = P — value x

Count: total number of binding events tested.

Rank: Rank of event in list list of p-values, from most
significant (rank = 1) to least (rank = Count)

Accept events (reject null) of rank = 1 .. k up to the point that
the Q-value is greater than the desired FDR.
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Irreproducible Discovery Rate (IDR) Analysis

* We have two replicates of an experiment

« How do we choose events are consistent in the
two replicates?



Spearman’s rank correlation provides a metric for
replicate consistency but does not select events

 Consider two ranked lists of n detected events X and Y, one from
each replicate, each ranked by scores from most significant to least

significant.
« For matched eventiranks are x, and y;in Xand Y
Spearman correlation=1

10 Pearson correlation=0.88
| | | | | |

. >l _i}{yi_g}
= : = : =
VZi(@ — 2)2 (g — )

—15L i i i i i
> 0.0 0.2 0.4 0.6 0.8 1.0
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Irreproducible Discovery Rate (IDR) Analysis

* Y (t) is the fraction of the n events that are
paired in the top n*t events in both Xand Y lItis
roughly linear from t=0 to the point when events
are no longer reproducible (not shared between
replicates within the ranking)

o W (t)is first derivative of W _(t) with respect to t.
It allows us to visualize when we transition from
reproducible to irreproducible events as t
Increases



Irreproducible Discovery Rate (IDR) Analysis
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FI1G. 1. An illustration of the correspondence profile in an idealized case, where top 5S0% are gen-
uine signals and bottom 50% are noise. In this case, all signals are ranked higher than noise; two
rank lists have perfect correspondence for signals and no correspondence for noise. (a) Correspon-
dence curve. (b) Change of correspondence curve.

Courtesy of Institute of Mathematical Statistics. Used with permission.
Source: Li, Qunhua, James B. Brown, et al. "Measuring Reproducibility of High-throughput
Experiments." The Annals of Applied Statistics 5, no. 3 (2011): 1752-79.

MEASURING REPRODUCIBILITY OF HIGH-THROUGHPUT
EXPERIMENTS'

BY QUNHUA LI, JAMES B. BROWN, HAIYAN HUANG AND PETER J. BICKEL

University of California at Berkeley
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Irreproducible Discovery Rate (IDR) Analysis

« Consider that the lists X and Y are a mixture of
two kinds of events — reproducible and
iIrreproducible.

* Model the ranking scores as a two component
mixture and learn the parameters of the
reproducible and irreproducible components

* For IDR a, select top | pairs using their scores
such that the probability that the rate of pairs
from the irreproducible part of the mixture is a



Irreproducible Discovery Rate Results
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Fi1G. 7. The coverage of high-confidence CTCF motif at different numbers of selected ChIP-seq
peaks, plotted at various idr cutoffs for nine peak callers on a CTCF Chip-seq experiment from
ENCODE. The bars on the curves of Peakseq, MACS, SPP, Fseq and Hotspot show the number of
peaks selected at IDR = 0.05. No selection is made for the rest of the peak callers because model
selection favors the one-component model for peaks identified by these callers.

Courtesy of Institute of Mathematical Statistics. Used with permission.
Source: Li, Qunhua, James B. Brown, et al. "Measuring Reproducibility of High-throughput
Experiments." The Annals of Applied Statistics 5, no. 3 (2011): 1752-79.

MEASURING REPRODUCIBILITY OF HIGH-THROUGHPUT
EXPERIMENTS'
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Genome-wide Event finding and Motif
discovery

ChiIP-Seq DNA
Reads Sequences

Biases binding event

|  ceEm |@ itostions
Event Motif
finding discovery
Bias motif T
discovery towards
binding sites

Binding events and
explanatory DNA motifs
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Motif-based positional prior
biases the binding event prediction

Mixture model

1 2

M Possible ‘ '
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el )

reads
N M M
p(R|x) =Hzﬂmp(rn m), Y, =1
n= m=1

m=1
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Position-specific
priors

 Events are sparse
» Events occurs more likely at motif

positions

play o Tz,

a, : uniform sparse prior parameter
governing

the degree of sparseness, a, >0;
a,, : position specific motif-based prior



GEM improves in resolving joint binding

events
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Courtesy of PLoS Computational Biology. License: CC-BY.
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Source: Guo, Yuchun, Shaun Mahony, et al. "High Resolution Genome Wide Binding Event Finding and Motif Discovery
Reveals Transcription Factor Spatial Binding Constraints." PLoS Computational Biology 8, no. 8 (2012): e1002638.
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GEM improves spatial accuracy
In binding event prediction
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Motif Event call
Courtesy of PLoS Computational Biology. License: CC-BY.

Source: Guo, Yuchun, Shaun Mahony, et al. "|High Resolution Genome Wide Binding Event Finding and Motif Discovery
Reveals Transcription Factor Spatial Binding Constraints." PLoS Computational Biology 8, no. 8 (2012): e1002638.
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GEM improves the spatial resolution of
ChlP-exo data event prediction
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Courtesy of PLoS Computational Biology. License: CC-BY.

Source: Guo, Yuchun, Shaun Mahony, et al. "High Resolution Genome Wide Binding Event Finding and Motif Discovery
Reveals Transcription Factor Spatial Binding Constraints." PLoS Computational Biology 8, no. 8 (2012): €1002638.
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GEM reveals transcription factor
spatial binding constraints

Total ~7500 Oct4 sites, ~2500 sites are within 100bp of Sox2 sites
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Courtesy of PLoS Computational Biology. License: CC-BY.
Source: Guo, Yuchun, Shaun Mahony, et al. "High Resolution Genome Wide Binding Event Finding and Motif Discovery
Reveals Transcription Factor Spatial Binding Constraints." PLoS Computational Biology 8, no. 8 (2012): e1002638.

37


http://dx.doi.org/10.1371/journal.pcbi.1002638
http://dx.doi.org/10.1371/journal.pcbi.1002638

NF-E2:S
¢-Jun:S-IFNa6h
c-Jun:S-IFNg30
c-Jun:S-IFNg6h

FOsS:W
FOSL1:M
c-Fos:S

JunB:wW

c-Jun:S

JunD:W

CTCF:B

CTCF.C

CTCF:ST
YY1:M-v1
YY1:M-v2
Egr-1:M
YY1:S
ETST:M
GABP:M 1 1 ; :
PU.T:M S
NRSF:M 101198481 \ 6142 74 ‘
SRF:M ] 8% 2 B8
STAT1:S-IFNagh
STAT1:S-IFNa30
STAT1:S-IFNg30
STAT1:S-IFNg8h

GATA1:S 43 83 84100
GATA2W 2818 21 19 11 ghialer160

NN =

2
2
2
5
2
2
2

<l 92 66 66 76 83’1

GATAZM
GATA2:S 3 | > g
Max:S 4 5 4 4 4 4 38C
¢-Mye:S-IFNa30 A7 1 3 45 4 818
c-Myc:S-IFNagh 2 : / 4 1 23 31 48 46 45,
c-Myc:C o] ; I 112120 115

c-Myc:S

USF1:M 55
2 8 n?q;$@"—>~$°~>\\\ 05_) 4"1‘*@‘-’@@&‘\*\56 O 9 & DD
o IR
‘\Qf;@;«w:‘\(g\% :%\:\ of‘o &'y & \QQ(;\ b\ﬁ\i@ i* P Q\) & gq‘ Q\:j{( 16\ Q‘\ o\?‘ ?{J’«?ﬁ'&@%\@ \\*\Z@;;V\Qéé\;é‘\
PP & ANTINTGN ,\'\ O
S &‘?‘ PPN U@t\s\ NS

Courtesy of PLoS Computational Biology. License: CC-BY.
Source: Guo, Yuchun, Shaun Mahony, et al. “|-Iigh Resolution Genome Wide Binding Event Finding and Motif Discovery
Reveals Transcription Factor Spatial Binding Constraints." PLoS Computational Biology 8, no. 8 (2012): €1002638.
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GEM Summary

 GEM incorporates motif information as a
position-specific prior to bias binding event
prediction

 GEM achieves exceptional spatial resolution,
and further improves joint event deconvolution

 GEM systematic analysis reveals in vivo
transcription factor spatial binding constraints in
human and mouse cells, provides testable
models for transcription factor interactions



Concept of a Transcriptional Regulatory Code

Phd1
Gcn4 Leu3
Yap7 Gcn4

| F— Harbison et al., Nature 431: 99 (2004)
YBR068C (BAP2)

What regulators contribute to control of each gene?
What sequences do they bind (cis-elements)?

When do the regulators bind these sequences?

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Harbison, Christopher T., D. Benjamin Gordon, et al. "Transcriptional Regulatory
[Fode of a Eukaryotic Genome." Nature 431, no. 7004 (2004): 99-104.
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Samples of the Draft Transcriptional Regulatory Co«
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Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Harbison, Christopher T., D. Benjamin Gordon, et al. "[Transcriptional Regulatory

[ode of a Eukaryotic Genome." Nature 431, no. 7004 (2004): 99-104.
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Is conservation a good predictor of conserved
binding events across species?

Mouse image courtesy of Pavid Deen. Used with permission.

©2006 David Deen |http:Ilwww.daviddeen.com
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Promoter proximal binding is not well conserved in liver
(FOXA2, HNF1A, HNF4A, HNFG)
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