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 Transcription factors regulate gene expression
 

© Emw on wikipedia. Some rights reserved. License: CC-BY-SA. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Transcription factors are proteins that bind to specific DNA 
sequences and act as molecular switches (Pit1 shown) 

Humans have ~2000 gene regulators. 
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http://ocw.mit.edu/help/faq-fair-use/
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TFIIH 

 

 

Gene Regulation: DNA -> RNA -> Protein�
 

Regulators Gene 


mRNA 


Protein 

What are the gene regulators that control gene expression? 

At what genes do these regulators operate?
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Gene regulatory networks provide key insight into 

cellular function�
 

Transcriptional regulatory network 
information will: 

• reveal how cellular processes 

are connected and coordinated 

• suggest new strategies to 

manipulate phenotypes and 
combat disease 

Courtesy of Richard Young. Used with permission.
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TFIIH 

ChIP-seq data reveals where TFs bind to the genome�
 

Regulators Gene 


mRNA 

ChIP-seq data 

Protein 
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ChIP-seq protocol 

Sequence 
ChIP DNA 

Enrich for protein-
bound DNA 
fragments with 
antibodies 

Crosslink Harvest cells 
proteins to and fragment 
binding sites DNA 
in living cells 

Sequence 
whole cell 
extract 
(WCE) DNA 
(control) 
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A binding event produces a distribution of reads 
around its site 

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Kharchenko, Peter V., Michael Y. Tolstorukov, et al. "Design and Analysis of ChIP-seq
Experiments for DNA-binding Proteins." Nature biotechnology 26, no. 12 (2008): 1351-9.
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http://www.nature.com/nbt/journal/v26/n12/abs/nbt.1508.html
http://www.nature.com/nbt/journal/v26/n12/abs/nbt.1508.html


Data from two binding events 
mES cell Oct4 ChIP Seq 
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ChIP-Seq reads are independently 
generated from a set of spatially 
discrete binding events  
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GPS addresses the challenges  
in ChIP-Seq analysis 

ChIP DNA are 
randomly fragmented 

Mixture of Reads 
from different events 

Model the spatial 
distribution of the reads 

Construct a mixture 
model 
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Courtesy of Wang and Zhang. Licensed CC-BY.
Source: Wang, Xi, and Xuegong Zhang. "Pinpointing Transcription Factor Binding Sites from ChIP-seqData with 
SeqSite." BMC Systems Biology 5, no. Suppl 2 (2011): S3.

  

http://dx.doi.org/10.1186/1752-0509-5-S2-S3
http://dx.doi.org/10.1186/1752-0509-5-S2-S3
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GPS estimates the spatial distribution of the reads 

Si = 0 for forward strand 
     = 1 for reverse strand 
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GPS probabilistically models ChIP-Seq read 
spatial distribution using a mixture model 

(single-base resolution) 

Possible
events

Observed
reads

Likelihood of N M M

observed reads p(R |π ) =∏ ∑ πmp(rn |m), ∑ πm =1
n=1m=1 m=1

1 2
M 

N 

m 

rn 

Prob. of event m 
Mixing prob.  
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Expectation-Maximization (EM) algorithm with component elimination 

π̂m
(i) =

Nm

Nm 'm '=1
M∑

E step M step 

Nm = ∑
N
n=1γ (zn =m)

γ (zn=m) : the fraction of read Nm : the effective number of 
n assigned to event m  reads assigned to event m 

N M MLikelihood of 
observed reads p(R |π ) =∏∑πm p(rn |m), ∑πm =1

n=1 m=1 m=1
Read assignment is latent 

g(zn =m) =1 Read n came from event m π = argmax p(R |π )
g(z =m Read n did not come from 

n ) = 0 π
event m 

π p r m(zn = m) = m ( n | )γ M

∑πm ' p(rn |m' )
m '=1
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Expectation-Maximization (EM) algorithm with component elimination 

Initialization Strength of binding event at end 
1

π Nm = ∑
N

j = n=1γ (zn =m)M

Nm : the effective number of 
reads assigned to event m 

Expectation-Maximization (EM) algorithm with component elimination 

π̂ (i) N
m = m

∑M
m '=1Nm '

E step M step 

Nm = ∑
N
n=1γ (zn =m)

γ (zn=m) : the fraction of read Nm : the effective number of 
n assigned to event m  reads assigned to event m 

∑
=

== M

m
nm

nm
n

mrp

mrpmz

1'
' )'|(

)|()(
π

π
γ
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Synthetic data, EM, no prior 
(events at 500 and 550 bp) 
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GPS deconvolves homotypic events and  
improves spatial accuracy 

Example of a predicted joint CTCF event that 
contains coordinately located CTCF motifs 
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A sparse prior on mixture components (binding events) 

∏
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Expectation-Maximization (EM) algorithm with component elimination 
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Nm : the effective number of 
reads assigned to event m 

(Figueiredo and Jain, 2002) 

E step M step 

γ (zn=m) : the fraction of read 
n assigned to event m  

N M MLikelihood of 
observed reads p(R |π ) =∏∑πm p(rn |m), ∑πm =1

n=1 m=1 m=1

π p(r |m)
γ (zn = m) = m n

M

∑πm ' p(rn |m' )
m '=1
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Synthetic data, EM, sparse prior 
(events at 500 and 550 bp) 
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EM –  
Sparse  
prior 

20
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GPS deconvolves homotypic events and  
improves spatial accuracy 

Example of a predicted joint CTCF event that 
contains coordinately located CTCF motifs 
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mES cell Oct4 ChIP Seq 
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We compute a p-value with a binomial test for 
significance 

Null Model – 
  

F(k,n,P) - Probability n-k reads observed in IP channel by chance with k 
reads observed in control.   P = 0.5 equal chance reads occurred in 
control and IP channels for null model. 
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We determine significant events by Benjamini 
Hochberg at a desired false discovery rate (FDR) 

Rank: Rank of event in list list of p-values, from most 
significant (rank = 1) to least (rank = Count) 
 
Accept events (reject null) of rank = 1 .. k up to the point that 
the Q-value is greater than the desired FDR. 
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Irreproducible Discovery Rate (IDR) Analysis 

•  We have two replicates of an experiment 
•  How do we choose events are consistent in the 

two replicates? 
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Spearman’s rank correlation provides a metric for 
replicate consistency but does not select events 

•  Consider two ranked lists of n detected events X and Y, one from 
each replicate, each ranked by scores from most significant to least 
significant. 

•  For matched event i ranks are xi and yi in X and Y 
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Irreproducible Discovery Rate (IDR) Analysis 

•  Ψn(t) is the fraction of the n events that are 
paired in the top n*t events in both X and Y   It is 
roughly linear from t=0 to the point when events 
are no longer reproducible (not shared between 
replicates within the ranking) 

•  Ψ�n(t) is first derivative of Ψn(t) with respect to t.  
It allows us to visualize when we transition from 
reproducible to irreproducible events as t 
increases 
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Irreproducible Discovery Rate (IDR) Analysis 

Courtesy of Institute of Mathematical Statistics. Used with permission.
Source: Li, Qunhua, James B. Brown, et al. "Measuring Reproducibility of High-throughput
Experiments." The Annals of Applied Statistics 5, no. 3 (2011): 1752-79.
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http://dx.doi.org/10.1214/11-AOAS466
http://dx.doi.org/10.1214/11-AOAS466


Irreproducible Discovery Rate (IDR) Analysis 

•  Consider that the lists X and Y are a mixture of 
two kinds of events – reproducible and 
irreproducible. 

•  Model the ranking scores as a two component 
mixture and learn the parameters of the 
reproducible and irreproducible components 

•  For IDR α, select top l pairs using their scores 
such that the probability that the rate of pairs 
from the irreproducible part of the mixture is α 
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Irreproducible Discovery Rate Results 

Courtesy of Institute of Mathematical Statistics. Used with permission.
Source: Li, Qunhua, James B. Brown, et al. "Measuring Reproducibility of High-throughput 
Experiments." The Annals of Applied Statistics 5, no. 3 (2011): 1752-79.
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http://dx.doi.org/10.1214/11-AOAS466
http://dx.doi.org/10.1214/11-AOAS466


Genome-wide Event finding and Motif 
discovery 

Event  
finding  

Motif 
discovery 

Biases binding event 
predictions towards 
motif positions 2 

ChIP-Seq 
Reads 

DNA 
Sequences 

Binding events and 
explanatory DNA motifs 

G E M 

1 Bias motif 
discovery towards 
binding sites 
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Position-specific 
priors  

•  Events are sparse 
•  Events occurs more likely at motif 

positions 

Motif-based positional prior  
biases the binding event prediction 

Mixture model 

Possible
events

M

p π ∝∏ −α s +αm
Observed

( ) (πm )
reads m=1

N M M

p(R |π ) =∏∑ p r |m), ∑π =1 αs : uniform sparse prior parameter 
πm ( n m governing  

n=1 m=1 m=1        the degree of sparseness, αs >0;  
αm : position specific motif-based prior 

1 2
M 

N 

b
m 

rn 
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GEM improves in resolving joint binding 
events 

 
 

TF A TF A 
(Human GABP Data : Valouev et al., 2008) 

Courtesy of PLoS Computational Biology. License: CC-BY.
Source: Guo, Yuchun, Shaun Mahony, et al. "High Resolution Genome Wide Binding Event Finding and Motif Discovery
Reveals Transcription Factor Spatial Binding Constraints." PLoS Computational Biology 8, no. 8 (2012): e1002638.
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http://dx.doi.org/10.1371/journal.pcbi.1002638
http://dx.doi.org/10.1371/journal.pcbi.1002638


GEM improves spatial accuracy  
in binding event prediction 
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Motif Event call 

(Human GABP Data (Mouse CTCF data 
 Valouev et al., 2008) Chen , et. al. 2008) 

Courtesy of PLoS Computational Biology. License: CC-BY.
Source: Guo, Yuchun, Shaun Mahony, et al. "High Resolution Genome Wide Binding Event Finding and Motif Discovery
Reveals Transcription Factor Spatial Binding Constraints." PLoS Computational Biology 8, no. 8 (2012): e1002638.
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http://dx.doi.org/10.1371/journal.pcbi.1002638
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GEM improves the spatial resolution of 
ChIP-exo data event prediction 
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 GEM initial distribution
GEM learned distribution

CTCF empirical distribution

Motif Event call 
(Rhee and Pugh, 2011) 

Courtesy of PLoS Computational Biology. License: CC-BY.
Source: Guo, Yuchun, Shaun Mahony, et al. "High Resolution Genome Wide Binding Event Finding and Motif Discovery
Reveals Transcription Factor Spatial Binding Constraints." PLoS Computational Biology 8, no. 8 (2012): e1002638.
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GEM reveals transcription factor 
spatial binding constraints  

630,-6bp 

277,-6bp 

Oct4 Sox2 

Total ~7500 Oct4 sites, ~2500 sites are within 100bp of Sox2 sites 

Courtesy of PLoS Computational Biology. License: CC-BY.
Source: Guo, Yuchun, Shaun Mahony, et al. "High Resolution Genome Wide Binding Event Finding and Motif Discovery
Reveals Transcription Factor Spatial Binding Constraints." PLoS Computational Biology 8, no. 8 (2012): e1002638.
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http://dx.doi.org/10.1371/journal.pcbi.1002638
http://dx.doi.org/10.1371/journal.pcbi.1002638


Courtesy of PLoS Computational Biology. License: CC-BY.
Source: Guo, Yuchun, Shaun Mahony, et al. "High Resolution Genome Wide Binding Event Finding and Motif Discovery
Reveals Transcription Factor Spatial Binding Constraints." PLoS Computational Biology 8, no. 8 (2012): e1002638.
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http://dx.doi.org/10.1371/journal.pcbi.1002638
http://dx.doi.org/10.1371/journal.pcbi.1002638


GEM Summary 

•  GEM incorporates motif information as a 
position-specific prior to bias binding event 
prediction 

•  GEM achieves exceptional spatial resolution, 
and further improves joint event deconvolution 

•  GEM systematic analysis reveals  in vivo 
transcription factor spatial binding constraints in 
human and mouse cells, provides testable 
models for transcription factor interactions 
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Concept of a Transcriptional Regulatory Code 

What regulators contribute to control of each gene? 

What sequences do they bind (cis-elements)? 

When do the regulators bind these sequences? 

 

Harbison et al., Nature 431: 99 (2004) 

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Harbison, Christopher T., D. Benjamin Gordon, et al. "Transcriptional Regulatory
Code of a Eukaryotic Genome." Nature 431, no. 7004 (2004): 99-104.
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http://dx.doi.org/10.1038/nature02800
http://dx.doi.org/10.1038/nature02800


Samples of the Draft Transcriptional Regulatory Co
Chromosome II 
Positions 370000:379300 

Chromosome IV 
Positions 1358800:1366600 

Chromosome V 
Positions 1359000:1366000 

d

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Harbison, Christopher T., D. Benjamin Gordon, et al. "Transcriptional Regulatory
Code of a Eukaryotic Genome." Nature 431, no. 7004 (2004): 99-104.
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http://dx.doi.org/10.1038/nature02800
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Is conservation a good predictor of conserved 
binding events across species? 

©2006 David Deen  http://www.daviddeen.com 

Mouse image courtesy of David Deen. Used with permission.
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http://www.daviddeen.com
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Promoter proximal binding is not well conserved in liver 
(FOXA2, HNF1A, HNF4A, HNF6) 

D. Odom, R. Dowell      E. Fraenkel, D. Gifford Labs 
Nature Genetics, 2007 

Source: Odom, Duncan T., Robin D. Dowell, et al. "Tissue-specific Transcriptional Regulation has
Diverged Significantly between Human and Mouse." Nature Genetics 39, no. 6 (2007): 730-32.43

http://dx.doi.org/10.1038/ng2047
http://dx.doi.org/10.1038/ng2047
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