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Lecture 5 – Libraries and Indexing 

• Library Complexity 

– How do we estimate the complexity of a sequencing 
library? 

 

• Full-text Minute-size index (FM Index/BWT) 

– How do we convert a genome into an alternate 
representation that permits rapid matching of millions 
of sequence reads?  

 

• Read Alignment 

– How can we use an FM index and BWT to rapidly 
align reads to a reference genome? 
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Library complexity is the number of unique 
molecules in the “library” that is sampled  

by finite sequencing 

Image adapted from Mardis, ARGHG (2008) 

Ligation Amplification Sequencing 

Sample DNA 

Adapters 

Reads 

Library 
Complexity = ? 
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Modeling approach 

• Assume we have C unique molecules in the library and 
we obtain N sequencing reads 

• The probability distribution of the number of times we 
sequence a particular molecule is binomial (individual 
success probability p=1/C, N trials in total) 

• Assume Poisson sampling as a tractable approximation 
(rate λ = N/C) 

• Finally, truncate the Poisson process: we only see events 
that happened between L and R times (we don’t know 
how many molecules were observed 0 times) 

See e.g. Cohen, JASA (1954) 
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Estimating library complexity with a 
Poisson model 

• For Poisson sampling, we can write the (truncated) 
distribution over xi, the times we sequence the ith 
molecule as: 

 

 

 

 

 

[ The probability is 0 if xi is less than L or greater than R ] 

• We can estimate the maximum likelihood rate parameter 
λ from a vector of observations x 
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Maximum likelihood library size 

 

 

 

 

• M unique sequences observed, maximum likelihood 
library size is 

 

 

• Approximate solution 
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Poisson Library Complexity model 
150 1000 Genome Datasets 
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Poisson Library Complexity model 
150 1000 Genome Datasets 

Poisson 
l  = Mean = Variance 
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Library complexity is the number of unique 
molecules in the “library” that is sampled  
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Gamma sampling rates describe 
the entire population (library 
preparation) 
  
 
 
Poisson sampling to form a 
smaller sample (sequencing) 
 
 
Negative binomial distribution 
characterizes the resulting 
occurrence histogram 
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The gamma distribution is a “conjugate prior” for 
the Poission distribution 
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Negative Binomial model for sequence occurrences 

C – library complexity (latent, fit to observed data) 

N – number of reads 

M – total number of unique sequences 

l= N/C 

k -  dispersion (latent, fit to observed data) 

 

Pr(xi | l, k)  = NegativeBinomial(xi | l, k) 

  = NegativeBinomial(xi | n, p) 

p = l / (l + 1/k) 

n = 1/k 
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• True library complexity: 1M unique molecules 

• Vary k (controls sampling rate variance) 

 

 
 

• Given 100K reads (λ=0.1), assess estimates from 
both models 
–k=0.1 Poisson: 0.93M  GP: 0.96M 95% unique 

–k=1 Poisson: 0.52M   GP: 1.01M 91% unique 

–k=10 Poisson: 0.12M   GP: 1.10M 70% unique 

–k=20 Poisson: 0.07M  GP: 0.68M 59% unique 

Simulation results show that the Gamma 
Possion works well for non-uniform libraries 
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Negative Binomial Library Complexity model  
150 1000 Genome Datasets 

Data are “overdispersed” (variance greater than mean) 
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Marginal value of additional sequencing 

C – library complexity (latent – estimated) 

N – number of reads 

M – number of unique sequences 

 

M can be estimated by (1 – Poisson(0 | l)) * C 

M can be estimated by (1 – NegativeBinomial(0 | l, k)) * C 
 

Assume we have r more reads 

 s = (N + r) / N 

Replace l by sl to estimate M’ achieved with r more reads 
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Marginal utility of sequencing 

C=106 
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Lecture 5 – Libraries and Indexing 

• Library Complexity 

– How do we estimate the complexity of a sequencing 
library? 

 

• Full-text Minute-size index (FM Index/BWT) 

– How do we convert a genome into an alternate 
representation that permits rapid matching of millions 
of sequence reads?  

 

• Read Alignment 

– How can we use an FM index and BWT to rapidly 
align reads to a reference genome? 
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Short Read Applications 

• Genotyping 

 

 

 

 

• RNA-seq, ChIP-seq, Methyl-seq 

…CCATAGGCTATATGCGCCCTATCGGCAATTTGCGGTATAC… 
GCGCCCTA 

GCCCTATCG 
GCCCTATCG 

CCTATCGGA 
CTATCGGAAA 

AAATTTGC 
AAATTTGC 

TTTGCGGT 
TTGCGGTA 

GCGGTATA 

GTATAC… 

TCGGAAATT 
CGGAAATTT 

CGGTATAC 

TAGGCTATA 

GCCCTATCG 
GCCCTATCG 

CCTATCGGA 
CTATCGGAAA 

AAATTTGC 
AAATTTGC 

TTTGCGGT 

TCGGAAATT 
CGGAAATTT 
CGGAAATTT 

AGGCTATAT 
AGGCTATAT 
AGGCTATAT 

GGCTATATG 
CTATATGCG 

…CC 
…CC 
…CCA 
…CCA 
…CCAT 

ATAC… 
C… 
C… 

…CCAT 
…CCATAG TATGCGCCC 

GGTATAC… 
CGGTATAC 

GGAAATTTG 

…CCATAGGCTATATGCGCCCTATCGGCAATTTGCGGTATAC… 
ATAC… …CC 

 GAAATTTGC 

Goal: identify variations 

Goal: classify, measure significant peaks 

http://www.cbcb.umd.edu/~langmead/NCBI_Nov2008.ppt 
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Short Read Applications 

Finding the 
alignments is 
typically the 
performance 
bottleneck 

…CCATAGGCTATATGCGCCCTATCGGCAATTTGCGGTATAC… 
GCGCCCTA 

GCCCTATCG 
GCCCTATCG 

CCTATCGGA 
CTATCGGAAA 

AAATTTGC 
AAATTTGC 

TTTGCGGT 
TTGCGGTA 

GCGGTATA 

GTATAC… 

TCGGAAATT 
CGGAAATTT 

CGGTATAC 

TAGGCTATA 

GCCCTATCG 
GCCCTATCG 

CCTATCGGA 
CTATCGGAAA 

AAATTTGC 
AAATTTGC 

TTTGCGGT 

TCGGAAATT 
CGGAAATTT 
CGGAAATTT 

AGGCTATAT 
AGGCTATAT 
AGGCTATAT 

GGCTATATG 
CTATATGCG 

…CC 
…CC 
…CCA 
…CCA 
…CCAT 

ATAC… 
C… 
C… 

…CCAT 
…CCATAG TATGCGCCC 

GGTATAC… 
CGGTATAC 

GGAAATTTG 

…CCATAGGCTATATGCGCCCTATCGGCAATTTGCGGTATAC… 
ATAC… …CC 

 GAAATTTGC 

http://www.cbcb.umd.edu/~langmead/NCBI_Nov2008.ppt 
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Short Read Alignment 

• Given a reference and a set of reads, report at least one 
“good” local alignment for each read if one exists 

– Approximate answer to: where in genome did read originate? 

 

 

…TGATCATA… 

  GATCAA 

…TGATCATA… 

  GAGAAT 
better than 

• What is “good”?  For now, we concentrate 
on: 

…TGATATTA… 

  GATcaT 

…TGATcaTA… 

  GTACAT 
better than 

– Fewer mismatches are better 

– Failing to align a low-quality base 
is better than failing to align a 
high-quality base 

http://www.cbcb.umd.edu/~langmead/NCBI_Nov2008.ppt 
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The Burrows-Wheeler Transform is a reversible 
representation with handy properties 

• Sort all the possible rotations of original string 

 

 

 

 

 

 

 
 

• Once BWT(T) is built, all else shown here is discarded 

– Matrix will be shown for illustration only 

Burrows 
Wheeler 
Matrix 

Last column 

BWT(T) T 

Burrows M, Wheeler DJ: A block sorting lossless data compression algorithm. Digital Equipment 
Corporation, Palo Alto, CA 1994, Technical Report 124; 1994 

http://www.cbcb.umd.edu/~langmead/NCBI_Nov2008.ppt 
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A text occurrence has the same rank in the 
first and last columns 

• When we rotate left and sort, the first character retains 
its rank.   Thus the same text occurrence of a character 
has the same rank in the Last and First columns.  

T 

BWT(T) 

Burrows Wheeler 
Matrix 

Rank: 2 

Rank: 2 

http://www.cbcb.umd.edu/~langmead/NCBI_Nov2008.ppt 
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The Last to First (LF) function matches 
character and rank 

BWT(T) 

Rank: 2 

http://www.cbcb.umd.edu/~langmead/NCBI_Nov2008.ppt 

LF(6, ‘c’) = Occ(‘c’) + Count(6,’c’) = 5 

Occ(‘c’) = 4 

Count(6,’c’) = 1 

Occ(qc) – Number of characters lexically smaller than qc in BWT(T) 
 
Count(idx, qc) – Number of qc characters before position idx in BWT(T) 

0 
1 
2 
3 
4 
5 
6 
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The Walk Left Algorithm inverts the BWT 

i = 0      

t = “” 

while bwt[i] != ‘$’: 

 t = bwt[i] + t 

 i = LF(i, bwt[i]) 
Final t 

http://www.cbcb.umd.edu/~langmead/NCBI_Nov2008.ppt 
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Lecture 5 – Libraries and Indexing 

• Library Complexity 

– How do we estimate the complexity of a sequencing 
library? 

 

• Full-text Minute-size index (FM Index/BWT) 

– How do we convert a genome into an alternate 
representation that permits rapid matching of millions 
of sequence reads?  

 

• Read Alignment 

– How can we use an FM index and BWT to rapidly 
align reads to a reference genome? 
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Exact Matching with FM Index 

q = “aac” 

top = 0 

bot = len(bwt) 

for qc in reverse(q): 

   top = LF(top, qc) 

   bot = LF(bot, qc) 

http://www.cbcb.umd.edu/~langmead/NCBI_Nov2008.ppt 

In each iteration top & bot 
delimit the range of rows 
beginning with progressively 
longer suffixes of q 

27 Courtesy of Ben Langmead. Used with permission.
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Exact Matching with FM Index 

 

• If range becomes empty (top = bot) the query suffix 
(and therefore the query) does not occur in the text 

http://www.cbcb.umd.edu/~langmead/NCBI_Nov2008.ppt 
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Rows to Reference Positions 

 

• Once we know a row contains a legal alignment, how do 
we determine its position in the reference? 

 

 

 

 

 

 

Where am I? 

http://www.cbcb.umd.edu/~langmead/NCBI_Nov2008.ppt 
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Rows to Reference Positions 

• Naïve solution 1: Use “walk-left” to walk back to the 
beginning of the text; number of steps = offset of hit 

 

 

 

 

 

 

 
 

 • Linear in length of text in general – too slow 

2 steps, so hit offset = 2 

http://www.cbcb.umd.edu/~langmead/NCBI_Nov2008.ppt 
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• Naïve solution 2: Keep whole suffix array in memory.  
Finding reference position is a lookup in the array. 

 

 

 

 

 

 
 

 
 

• Suffix array is ~12 gigabytes for human – too big 

Rows to Reference Positions 

hit offset = 2 

http://www.cbcb.umd.edu/~langmead/NCBI_Nov2008.ppt 
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• Hybrid solution: Store sample of suffix array; “walk left” 
to next sampled (“marked”) row to the left 

– Due to Ferragina and Manzini 

 

 

 

 

 

 
 
 

• Bowtie marks every 32nd row by default (configurable) 

Rows to Reference Positions 

1 step 

offset = 1 

Hit offset = 1 + 1 = 2 

http://www.cbcb.umd.edu/~langmead/NCBI_Nov2008.ppt 
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• Algorithm concludes: “aac” occurs at offset 2 in 
“acaacg” 

Put It All Together 

http://www.cbcb.umd.edu/~langmead/NCBI_Nov2008.ppt 
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The FM index makes LF fast 

• LF(i, qc) must determine the rank of qc in row i 
 

• Naïve way: count occurrences of qc in all previous rows 

– This LF(i, qc) is linear in length of text – too slow 

 

Scanned by naïve 
rank calculation 

http://www.cbcb.umd.edu/~langmead/NCBI_Nov2008.ppt 
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A Full-text Minute-size (FM) 
index makes LF constant time 

• Solution: pre-calculate cumulative 
counts for A/C/G/T up to periodic 
checkpoints in BWT 

 

 

 

 

 

 
 

 

• LF(i, qc) is now constant-time 
(if space between checkpoints is considered constant) 

Rank: 309 

Rank: 242 

http://www.cbcb.umd.edu/~langmead/NCBI_Nov2008.ppt 
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An FM Index is Small 

• Entire FM Index on DNA reference consists of: 

– BWT (same size as T) 

– Checkpoints (~15% size of T) 

– Suffix array sample  

   (~50% size of T) 
 

• Total: ~1.65x the size of T 

>45x >15x >15x ~1.65x 

Assuming 2-bit-per-base encoding and  
no compression, as in Bowtie 

Assuming a 16-byte checkpoint every 
448 characters, as in Bowtie 

Assuming Bowtie defaults for suffix-
array sampling rate, etc 

http://www.cbcb.umd.edu/~langmead/NCBI_Nov2008.ppt 
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FM Index in Bioinformatics 

• Oligomer counting 

– Healy J et al: Annotating large genomes with exact word 
matches. Genome Res 2003, 13(10):2306-2315. 

 

• Whole-genome alignment 

– Li H et al: Fast and accurate short read alignment with Burrows-
Wheeler transform  Bioinformatics 2009, 25(14):1754-1760. 

     BWA Aligner 

– Lippert RA: Space-efficient whole genome comparisons with 
Burrows-Wheeler transforms. J Comp Bio 2005, 12(4):407-415. 

 

• Smith-Waterman alignment to large reference 

– Lam TW et al: Compressed indexing and local alignment of DNA. 
Bioinformatics 2008, 24(6):791-797. 

http://www.cbcb.umd.edu/~langmead/NCBI_Nov2008.ppt 37 
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Short Read Alignment 

• FM Index finds exact sequence matches quickly in small 
memory, but short read alignment demands more: 

– Allowances for mismatches 

– Consideration of quality values 
 

• Bowtie’s solution: backtracking quality-aware search 

http://www.cbcb.umd.edu/~langmead/NCBI_Nov2008.ppt 
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Backtracking 

• Consider an attempt to find Q = “agc” in T = “acaacg”: 

 

 

 

 

 

 

 

• Instead of giving up, try to “backtrack” to a previous 
position and try a different base 

“gc” does not 
occur in the text 

“g” 

“c” 

http://www.cbcb.umd.edu/~langmead/NCBI_Nov2008.ppt 
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Backtracking 

Found this alignment: 

acaacg 

agc 

“g” 

“a” “a” 

“c” 

“c” 

• Backtracking attempt for Q = “agc”, T = “acaacg”: 

“gc” does not 
occur in the text 

Substitution 

http://www.cbcb.umd.edu/~langmead/NCBI_Nov2008.ppt 
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Backtracking 

• May not be so lucky 

Found this alignment (eventually): 

acaacg 

agc 

“g” 

“t” 

“c” 

“a” “a” 

http://www.cbcb.umd.edu/~langmead/NCBI_Nov2008.ppt 
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Backtracking 

• Relevant alignments may lie along multiple paths 

– E.g., Q = “aaa”, T = “acaacg” 

acaacg 

aaa 

“a” “a” 

acaacg 

aaa 

acaacg 

aaa 

“a” “c” “c” “a” 

“a” 

“a” 
“c” 

“a” “a” 

“a” 

http://www.cbcb.umd.edu/~langmead/NCBI_Nov2008.ppt 
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Bowtie backtracks to leftmost just-visited 
position with minimal quality 

• PHRED score = -10log(p)     Where p is probability of 
error 

 

 

 

 

 

 

 

 
• Greedy, depth-first, not optimal, but simple 

Sequence: 
Phred Quals: 

(higher number = 
higher confidence) 

G C C A T A C G G A T T A G C C 
40 40 35 40 40 40 40 30 30 20 15 15 40 40 40 40 

G C C A T A C G G A C T A G C C 
40 40 35 40 40 40 40 30 30 20 15 15 40 40 40 40 

G C C A T A C G G G C T A G C C 
40 40 35 40 40 40 40 30 30 20 15 15 40 40 40 40 

http://www.cbcb.umd.edu/~langmead/NCBI_Nov2008.ppt 
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Specifying match quality 

• Bowtie supports a Maq*-like alignment policy 

– ≤ N mismatches allowed in first L bases on left end 

– Sum of mismatch qualities may not exceed E 

– N, L and E configured with -n, -l, -e 

– E.g.: 

 

 

 
 

• PHRED score = -10log(p)     Where p is probability of 
error 

* Li H, Ruan J, Durbin R: Mapping short DNA sequencing reads and calling 
variants using mapping quality scores. Genome Res 2008.  

G C C A T A C G G G C T A G C C 
40 40 35 40 40 40 40 30 30 20 15 15 40 25 5 5 

L=12 E=50, N=2 

If N < 2 

If E < 45 

If L < 9 and N < 2 

http://www.cbcb.umd.edu/~langmead/NCBI_Nov2008.ppt 
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Bowtie can match starting from the left to 
limit backtracking 

• But how to match left-to-right? 

• Double indexing: 

– Reverse read and use “mirror index”: index for 
reference with sequence reversed 

G C C A T A C G G A T T A G C C 

C C G A T T A G G C A T A C C G 

No backtracks allowed 

Forward Index 

Mirror Index 

No backtracks allowed 

45 Courtesy of Ben Langmead. Used with permission.
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Time to build a BWT/FM index 

• Bowtie employs a indexing algorithm* that can trade flexibly 
between memory usage and running time 

• For human genome (NCBI 36.3) on 2.4 GHz AMD Opteron: 

* Kärkkäinen J: Fast BWT in small space by blockwise suffix sorting. Theor 
Comput Sci 2007, 387(3):249-257. 

Physical 
memory  

Target 

Actual peak 
memory 
footprint Wall clock time 

16 GB 14.4 GB 4h:36m 

8 GB 5.84 GB 5h:05m 

4 GB 3.39 GB 7h:40m 

2 GB 1.39 GB 21h:30m 

http://www.cbcb.umd.edu/~langmead/NCBI_Nov2008.ppt 
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35bp read alignment performance 

CPU time 
Wall clock 

time 
Reads 

per hour 

Peak 
virtual 

memory 
footprint Speedup 

Bowtie, 1 thread (server) 18m:19s 18m:46s 28.3 M 1,353 MB - 

Bowtie, 2 threads (server) 20m:34s 10m:35s 50.1 M 1,363 MB 1.77x 

Bowtie, 4 threads (server) 23m:09s 6m:01s 88.1 M 1,384 MB 3.12x 

• Bowtie uses POSIX threads to exploit multi-processor computers 

– Reads are distributed across parallel threads 

– Threads synchronize when fetching reads, outputting results, etc. 

– Index is shared by all threads, so footprint does not increase 
substantially as # threads increases 

• Table shows performance results for Bowtie v0.9.6 on 4-core Server 
with 1, 2, 4 threads 

http://www.cbcb.umd.edu/~langmead/NCBI_Nov2008.ppt 
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Paired read alignment in BWA 

Left Read Right Read Unobserved 

Insert size (only estimate known) 

Sequencing instrument identifies read pairs (also called mate pairs) 
in its output file 
 
First, align Left and Right Reads  (they can only be oriented with 
respect to a genome sequence) 
 
If one read fails to align uniquely, use Smith-Waterman for the 
unaligned read in proximal sequence to the aligned read 

48 



Considerations for read alignment 

Uniquely aligning reads vs. “multimaped” reads in output 
 
Desired mismatch tolerance 
 
Desired processing for paired reads 
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FIN 
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