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Topic 1 Info
 

• Overview slide has blue background - readings for upcoming lectures are 
listed at bottom of overview slide 

• Review slides will have purple background 

• Send your background/interests to TA for posting if reg’d for grad version
 

• PS1 is posted. BLAST tutorial may be helpful  

• PS2 is posted. Look at the programming problem 
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Local Alignment (BLAST) and Statistics

•    Sequencing

      - Conventional

      - 2nd generation 

•    Local Alignment:
   - a simple BLAST-like algorithm

   - Statistics of matching
      - Target frequencies and mismatch penalties        
         for nucleotide alignments

Background for 2/7, 2/12 lectures: Z&B Ch. 4 & 5, BLAST tutorial
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Questions: Chemistry / Library Prep 
Dye terminator chemistry: dye is attached to base
 

How to put different adapters on the two ends?
 

At least three ways:
 

1) RNA ligation 
 OH p OH p 

2) polyA tailing/polyTVN-ad2priming/circularization (PMID 19213877)
 

3) ligation of Y-shaped adapters 

A 
A T

T 
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DNA Sequence Alignment I: Motivation

You are studying a recently discovered human non-coding RNA.

You search it against the mouse genome using BLASTN (N for 
nucleotide) and obtain the following alignment:  

  Q: 1   ttgacctagatgagatgtcgttcacttttactcaggtacagaaaa 45
         |||| |||||||||||| | |||||||||||| || |||||||||
  S: 403 ttgatctagatgagatgccattcacttttactgagctacagaaaa 447

Is this alignment significant?
Is this likely to represent a homologous RNA?

How to find alignments?
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DNA Sequence Alignment II
 

Identify high scoring segments whose score S exceeds 
     a cutoff x using a local alignment algorithm (e.g., BLAST) 

Scores follow an extreme value (aka Gumbel) distribution: 

P(S > x) = 1 - exp[-KMN e-λx] 
For sequences/databases of length M, N where K, λ are positive 
parameters that depend on the score matrix and the composition of the 
sequences being compared 

Conditions: expected score is negative, but positive scores possible 

Alternate algorithm 

Karlin & Altschul 1990
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Computational Efficiency
 
Measure efficiency in cpu run time and memory 

O() = “big-oh” notation (computational Order of problem) 

Consider the number of individual computations required 
to run algorithm as a function of the number of ‘units’ in the 
problem (e.g., base pairs, amino acid residues) 

Analyze the asymptotic worst-case running time or 
sometimes just do the experiment and measure run time 
If problem scales as square of the number of units it is

 O(n

2) “order n-squared” O(n
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DNA Sequence Alignment III
 
How is λ related to the score matrix? 

λ is the unique positive solution to the equation*: 

∑ pirjeλsij = 1 
i,j 

pi = freq. of nt i in query, rj = freq. of nt j in subject 

sij = score for aligning an i,j pair 

“Target frequencies”* : qij = pirjeλsij 

*Karlin & Altschul, 1990 
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DNA Sequence Alignment VI 

Optimal mismatch penalty m for given target identity fraction r
 

m = ln(4(1-r)/3)/ln(4r) 

Examples: 

r = expected fraction of identities in high-scoring BLAST hits 


 r 0.75    0.95      0.99
 m   -1         -2         -3
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DNA Sequence Alignment VII 

Meaning of mismatch penalty equation Examples: 

m = ln(4(1-r)/3)/ln(4r) 
r 0.75 0.95 0.99
 
m  -1 -2 -3
 

So why is m = -3 better for finding matches with 99% identity?
 

Does it mean that you can only find 99% identical matches with a mismatch score of -3? 


Answer: No. It’s also possible to find 99% matches with m = -1 or -2.
 

But m changes the match length required to achieve statistical significance
 

λ is the unique positive solution to the equation
 

∑ pipjeλsij = 1 pi = frequency of nt i, sij = score for aligning an i,j pair
i,j 

and P(S > x) = 1 - exp[-KMN e-λx] 
If we change the mismatch score from -1 to -3, λ will increase. Therefore, the score required to achieve 
a given level of significance will decrease, i.e. shorter hits will be significant. 
So why would you ever want to use m = -1? 
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Google: 
blastn 

Courtesy of National Library of Medicine. In the public domain.
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http://blast.ncbi.nlm.nih.gov/Blast.cgi


Courtesy of National Library of Medicine. In the public domain.
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Translating searches:
    translate in all possible reading frames
    search peptides against protein database (BLASTP)

ttgacctagatgagatgtcgttcacttttactgagctacagaaaa

ttg|acc|tag|atg|aga|tgt|cgt|tca|ctt|tta|ctg|agc|tac|aga|aaa
 L   T   x   M   R   C   R   S   L   L   L   S   Y   R   K

t|tga|cct|aga|tga|gat|gtc|gtt|cac|ttt|tac|tga|gct|aca|gaa|aa
   x   P   R   x   D   V   V   H   F   Y   x   S   T   E   

tt|gac|cta|gat|gag|atg|tcg|ttc|act|ttt|act|gag|cta|cag|aaa|a
    D   L   D   E   M   S   F   T   F   T   E   L   Q   K

Also consider reading frames on complementary DNA strand

DNA Sequence Alignment VIII
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DNA Sequence Alignment IX

Common flavors of BLAST:
 Program             Query        Database

 BLASTP 
 BLASTN 
 BLASTX 
 TBLASTN 
 TBLASTX 

 PsiBLAST 

aa            aa
nt           nt
nt (⇒ aa)      aa
aa                 nt (⇒ aa)
nt (⇒ aa)      nt (⇒ aa)

aa (aa msa) aa

Which would be best for searching ESTs against a genome?

msa = multiple sequence alignment
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Global Alignment of Protein Sequences
 
(NW, SW, PAM, BLOSUM)
 

• 	 Global sequence alignment
      (Needleman-Wunch-Sellers) 
• 	 Gapped local sequence alignment
      (Smith-Waterman) 
• 	 Substitution matrices for protein comparison 

Background for today: Z&B Chapters 4,5 (esp. pp. 119-125)
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Why align protein sequences? 
•	 Functional predictions based on identifying homologous proteins or protein 

domains 

Assumes 

Sequence similarity Similarity in function (and/or structure) 
implies 

• almost always true for similarity > 30% 
• 20-30% similarity is “the twilight zone” 

BUT: Function carried out at level of folded protein, i.e. 3-D structure 
Sequence conservation occurs at level of 1-D sequence 

Converse is not true 

Structural similarity Sequence similarityX 

(or even homology) 

 (or even homology) 
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Convergent Evolution
 

hummingbird 

hawk moth 

Last common ancestor 
lived > 500 Mya and 
lacked wings (and 
probably legs and eyes) 

Same idea for proteins 

- can result in similar 
structures with no 
significant similarity in 
sequence 

Courtesy of Matthew Field. License: CC-BY.

© Dave Green at Butterfly Conservation. All rights reserved.
This content is excluded from our Creative Commons license. For
more information, see http://ocw.mit.edu/help/faq-fair-use/.

17

http://commons.wikimedia.org/wiki/File:Female_Anna%27s_hummingbird_feeding.jpg
http://butterfly-conservation.org/51-1087/humming-bird-hawk-moth.html
http://ocw.mit.edu/help/faq-fair-use/


hummingbird

Convergent Evolution of Fe3+-binding Proteins
 

Last common ancestor 
occurred > 2Bya 

and bound anions 

Haemophilus Fe3+-binding protein (hFBP) 

Eukaryotic lactoferrin 

Bruns et al. Nature Struct. Biol. 1997
 

Courtesy of Nature Publishing Group. Used with permission.
Source: Bruns, Christopher M., Andrew J. Nowalk, et al. "Structure of Haemophilus
Influenzae Fe+3-Binding Protein Reveals Convergent Evolutionwithin a Superfamily."
Nature Structural & Molecular Biology 4, no. 11 (1997): 919-24.
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http://dx.doi.org/10.1038/nsb1197-919
http://dx.doi.org/10.1038/nsb1197-919


 

Convergent Evolution of a Protein and an RNA
 

RRF (protein) 

Yeast tRNAPhe 

Unlikely to have ever 
had a common 
molecular ancestor 

T.
Selmer et al. Science 286. 2349 -. 1999
 

 maritima ribosome recycling factor (RRF) 

© American Association for the Advancement of Science. All rights reserved.
 This content is excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Selmer, Maria, Salam Al-Karadaghi, et al. "Crystal Structure of 
Thermotoga Maritima Ribosome Recycling Factor: A tRNA Mimic."
Science 286, no. 5448 (1999): 2349-52. 
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http://dx.doi.org/10.1126/science.286.5448.2349
http://dx.doi.org/10.1126/science.286.5448.2349
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Types of Alignments 
Scope: 

• Local 
• Global 
• Semiglobal 

Scoring system: 

• Ungapped 
• Gapped


 linear

 affine
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Dot Matrix Alignment Example
 
Sequence #1 

Sequence #2 1 n 

1 

Insertion in seq1 

Insertion in seq2 

m 

What type of alignment would be most appropriate for this pair of sequences? Global 
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Dot Matrix Alignment Example 2 
Sequence #1 

nSequence #2 1
 

1
 

m
 

What type of alignment would be most appropriate for this pair of sequences? Local
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Gaps (aka “Indels”) AKHFRGCVS
AKKF--CVG 
• Linear Gap Penalty 

– γ(n) = nA, n= no. of gaps, A = gap penalty
 

• “Affine” gap penalty 

Wn = G + nγ, 

n = no. of gaps, γ = gap extension penalty, 

and G = gap opening penalty
 

Or: 

Wn = G + (n-1)γ 

with alternative definition of gap opening penalty 
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Obtain optimal global alignment using Dynamic Programming: 

First write one sequence across the top, and one down along the side 

Gap V D S C Y 

Gap 

V 

E 

0 1 gap 

1 gap 

2 gaps 

2 gaps 

S 

L 

C 

Y 

Note – linear gap penalty: γ(n)=nA, where A=gap penalty
 
a negative number 
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Dynamic Programming:
 
Initialize the alignment matrix
 

i =0 1 2 3 4 5 

j = Gap V D S C Y 

0 Gap 0 -8 -16 -24 -32 -40 

1 V -8 

2 E -16 

3 S -24 
Sij = score of optimal alignment ending at position i in 
seq 1 and j in seq 2. Requires that we know S(i-1, j-1), 
S(i, j-1), S(i-1, j). 

4 L -32 Recursive: Solution to larger problem is built up from 
solutions to smaller problems 

5 C -40 Store Sij and how we arrived at Sij in a matrix 
Often called ‘dynamic programming’ or more generally 

sij 

6 Y -48 ‘recursive optimization’
 

What is the gap penalty in this example?
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-8 

sij 

Dynamic Programming: Recursion 
Sequence 1 

i =0 1 2 3 4 5
 
Sequence 2 

Gap V D S C Y
j =
 

0 Gap 0
 -16 -24 -32 -40
 

1 V
 -8
 

2 E -16
 
Global alignments: Needleman-Wunsch-Sellers 

3 S -24 
Sij = max of: Si-1, j-1 + σ(xi, yj) (diagonal)

4 L -32 

Si-1, j + A (from left to right)5 C -40
 

6
 Y -48 Si, j-1+ A (from top to bottom) 

Computational complexity? O(mn) with linear gap penalty
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PAM250 Scoring Matrix
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© source unknown. All rights reserved. This content is excluded from our Creative
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Dynamic Programming: filling in matrix
 

Gap V 

Gap 

V 

0 -8 

-8 sij 

j = 

0 

1 

4 

4 

-8 

i =0 1 2 3 4 5 

D S C Y
 

-16 -24 -32 -40
 
-8 

-162 E 

Sij = max of: Si-1, j-1 + σ(xi, yj) (diagonal)3 S -24
 

4 L -32
 Si-1, j + A (from left to right) 
C -405 

Si, j-1 + A (from top to bottom)
6 Y -48 
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Sequence 1 

Sequence 2 i =0 1 2 3 4 5 

j = 
Gap V D S C Y 

0 Gap 0 
-8 

-16 -24 -32 -40 

1 V -8 
-8 

2 E -16 

3 S -24 

4 L -32 

5 C -40 

6 Y -48 

-8 

4 
4 
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Sequence 1
 

Sequence 2 i =0 1 2 3 4 5
 

Gap V D S C Y
j =
 

0 Gap 0 4 -8 -16 -24 -32 -40
 
-2 -8 

1 V -8 
-8 

sij4
 
2 E -16 

3 S -24 Sij = max of: Si-1, j-1 + σ(xi, yj) (diagonal) 

4 L -32 
Si-1, j + A (from left to right) 

5 C -40 

Si, j-1 + A (from top to bottom)6
 Y -48 
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-4 

Sequence 1 

Sequence 2 i =0 1 2 3 4 5 

j = Gap V D S C Y 

0 Gap 0 -8 -16 -24 -32 -40 
-8 

1 V -8 

2 E 

3 S 

4 L 

5 C 

6 Y 

4 
4 -2 

-8 
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Completed Dynamic Programming Matrix
 

i =0 1 2 3 4 5 

Gap V D S C Y 
j =
 

0 Gap 0 4 -8 -16 -24 -32 -40
 
-8 

-8-8 -12 -20 -284 -41 V 
3 

2 E -16 -6 7 2 -1 -9 -17 
1 -73 S -24 -14 -6 9 

-8 

-32 04 L -22 -14 1 12 3 
5 C -40 -30 -22 -7
 13
 3 

10 

6 Y -48 -38 -30 -15 5 23 
Keep track of scores AND how we got them . “traceback matrix”
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1 

The Traceback:
 
After the alignment square is finished, start at the lower right and
 
work backwards following the arrows to see how you got there.
 

i =0 1 2 3 4 5 

j = Gap V D S C Y 

0 Gap 0 4 -8 -16 -24 -32 -40 

1 V -8 

2 E -16 

3 S -24 

4 L -32 

5 C -40 

6 Y -48 

-8 

4 -4 
-3 

-8 -12 -20 -28 

-6 

-14 

-22 
-30 

-38 

7 
3 

-6 

-14 
-22 

-30 

9 
2 -1 

-7 
-15 

-9 

1 

3 
13 
5 

-17 
-7 

0 
3 

23 
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V D S – C YThe Traceback V E S L C Ygives the alignment: 
i =0 1 2 3 4 5 

Gap V D S C Yj =
 

0 Gap 0 4 -8 -16 -24 -32 -40
 
-8 

V 

E 

S 

L 

C 

Y 

-8 

-16 

-24 

-32 

-40 

-48 

41 

2 

3 

4 

5 

6 

-4 
-3 

-8 -12 -20 -28 

-6 

-14 

-22 
-30 

-38 

7 
3 

-6 

-14 
-22 

-30 

9 
2 -1 

1 
-7 

-15 

-9 

1 

3 
13 
5 

-17 
-7 

0 
3 

23 
“Life must be lived forwards and understood backwards.” 

- Søren Kierkegaard 

34



 

Semiglobal Alignment
 

Allow sequences to overhang at either end without penalty 
-usually gives better alignments of homologous sequences of 
different lengths 

Same algorithm as before except 

• initialize edges of DP matrix Si,0 and S0,j to 0 

• instead of requiring traceback to begin at Sm,n, allow it to 
begin at highest score in bottom row or rightmost column 
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Gapped Local Alignment 
Temple Smith and Michael Waterman, 1981 – modified 
Needleman-Wunsch-Sellers 

Local alignment is the best scoring alignment of a substring 
in sequence x to a substring in sequence y. 

Key idea is not to force the alignment to extend to the ends 
of the sequences 

Photograph of scientists removed
due to copyright restrictions.
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Smith-Waterman Local Alignment
 

Again, use dynamic programming 

Same basic scheme as before except 

• similarity matrix MUST include negative values for mismatches 

and 

• when the value calculated for a position in the scoring matrix is 

negative, the value is set to zero - this terminates the alignment
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Smith-Waterman:
 

sij 

Write one sequence across the top, and one down along the side
 

i =0 1 2 3 4 5
 

Gap V D S C Y
j = 

0 00 Gap 0  0  0  0

1 V 0

2 E 0 Local alignments: Smith-Waterman 
3 S 0 Sij = max of: Si-1, j-1 + σ(xi, yj) (diagonal)
4 L 0

Si-1, j – A (from left to right)5 C 0
6 Y 0 Si, j-1– A (from top to bottom) 

0 
38



Need a metric of similarity between amino acid pairs
 

Simplest metric – identity matrix 

1 
1 0 

1 0 
1 0 

1 0 
1 0 

1 
1 

1 

A C D E F G H I K 
A 0 0 0 0 0 0 0 0 
C 0 0 0 0 0 0 
D 0 0 0 0 0 
E 0 0 0 0 
F 0 0 0 
G 0 0 
H 0 0 
I 0 
K 

OK for nucleic acids, 
but for proteins can 
do substantially better 

What properties should an 
amino acid similarity matrix 
have? 

Refer to 
Z&B pp. 119-125 
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Scoring system should favor matching identical 
or related amino acids and penalize for poor 
matches and for gaps 

Need to know how often a particular amino acid 
pair is found in related proteins compared with its 
occurence by chance, and also how often gaps 
(insertions/deletions) are found in related proteins 
relative to dissimilar amino acid pairs 
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Scores and Evolution
 

Any alignment scoring system brings with it an implicit evolutionary model
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Amino Acid Substitution Matrices
 
Margaret Dayhoff, 1978, PAM Matrices 

Explicit evolutionary model 
Assumes symmetry: A → B = B → A 
Assumes amino acid substitutions observed over short 
periods of time can be extrapolated to long periods of time 

71 groups of protein sequences, 85% similar 
1572 amino acid changes. 

Functional proteins → mutations “accepted” by natural selection
 

PAM1 matrix means 1% divergence between proteins - i.e. 
1 amino acid change per 100 residues. Some texts re-state 
this as the probability of each amino acid changing 
into another is ~ 1% and probability of not changing is ~99% 
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Construction of a Dayhoff Matrix: PAM1
 
Step 1: Measure pairwise substitution frequencies for each 

amino acid within families of related proteins that can be 


confidently aligned
 

….GDSFHYFVSHG…..….GDSFHYYVSFG…..….GDSYHYFVSFG…..….GDSFHYFVSFG…..….GDSFHFFVSFG….. 
900 Phe (F) remained F
 
100 Phe (F) →  80 Tyr (Y), 3 Trp (W), 2 His (H)..
 
Gives nab, i.e. nYF=80 

n indicates raw count
 of eventsnWF=3
 

..in evolution
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Images of The Simpsons © FOX. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

DNA Sequence Evolution

Generation n-1 (grandparent)

Generation n (parent)
5’ TGGCATGCACCCTGTAAGTCAATATAAATGGCTATGCCTAGCCCATGCGA 3’
   ||||||||||||||||||||||||||||||||||||||||||||||||||
3’ ACCGTACGTGGGACATTCAGTTATATTTACCGATACGGATCGGGTACGCT 5’

5’ TGGCATGCACCCTGTAAGTCAATATAAATGGCTATGCCTAGCCCGTGCGA 3’
   ||||||||||||||||||||||||||||||||||||||||||||||||||
3’ ACCGTACGTGGGACATTCAGTTATATTTACCGATACGGATCGGGCACGCT 5’

5’ TGGCATGCACCCTGTAAGTCAATATAAATGGCTACGCCTAGCCCATGCGA 3’
   ||||||||||||||||||||||||||||||||||||||||||||||||||
3’ ACCGTACGTGGGACATTCAGTTATATTTACCGATGCGGATCGGGTACGCT 5’

Generation n+1 (child)
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, X2=x2, . Xn=xn) = P(Xn+1 = j | Xn=xn ) 

(for all xi, all j, all n) 

     

 
 

Markov Model (aka Markov Chain)
 

Classical Definition 

Stochastic Process: 
• a random process or 
• a sequence of Random Variables 

A discrete stochastic process X1, X2, X3, . 
which has the Markov property:

 P(Xn+1 = j | X1=x1

In words: 
A random process which has the property that the 
future (next state) is conditionally independent of 
the past given the present (current state) 

Andrey Markov, a Russian mathematician (1856 - 1922) Image is in the public domain.
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