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Today’s Narrative Arc

1. Using computational methods we can break the epigenetic
“code” that describes the function and state of genome
elements. Epigenetic state regulates gene function without
changing primary DNA sequence. Epigenetic state includes
histone marks, DNA methylation, and chromatin openness.

2. We can estimate the protein occupancy of the genome and
discover pioneer factors with DNase-seq via computational
methods.

3. We can map enhancers to their regulatory targets with the
computational analysis of ChlA-PET data (and similar
technologies)
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Today’s Computational Methods

1. Dynamic Bayesian Networks
2. Factor binding classification using a log likelihood ratio
3. Hypergeometric distribution
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Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Zhou, Vicky W., Alon Goren, et al. "Charting Histone Modifications and the Functional
Organization of Mammalian Genomes." Nature Reviews Genetics 12, no. 1 (2010): 7-18.
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What is the Histone
Code?
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View of the ENC1 locus on the minus strand using the ENCODE GM12878 segmentations.
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Ideas for chromatin track analysis

 Hidden Markov Model (ChromHMM)

* Dynamic Bayesian Network (Segway)

— Bayesian Network that models data sampled at
intervals. Still a directed acyclic graph (DAG).

— Can learn model with Graphical Model Toolkit
(GMTK)

— Can incorporate relationships between variables
and handle missing data

— 1bp analysis resolution
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Segway Dynamic Bayesian Network
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Source: Hoffman, Michael M., Orion J. Buske, et al. "Segway: Simultaneous Segmentation of Multiple
Functional Genomics Data Sets with Heterogeneous Patterns of Missing Data."
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Today’s Narrative Arc

1. We can break the epigenetic “code” that describes the
function and state of genome elements using computational
methods. Epigenetic state regulates gene function without
changing primary DNA sequence. Epigenetic state includes
histone marks, DNA methylation, and chromatin openness.

2. We can estimate the protein occupancy of the genome and
discover pioneer factors with DNase-seq via computational
methods.

3. We can map enhancers to their regulatory targets with the
computational analysis of ChlA-PET data (and similar
technologies)

12
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What are the rules governing how a TF chooses its
genomic binding sites?

Motifs are insufficient to
predict binding

Binding sites change across
~50,000 binding sites time
for a typical TF

Tcf712 ChiIP-Seq

Endoderm only

~650,000
TF Motifs

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Pioneer Transcription Factors (TFs) are special

= Pioneer TFs bind target sites regardless of chromatin state
o FoxA, histone mimic [Gualdi 1996]
o iPS reprogramming factors pioneer (KIf, Oct, Sox) [Soufi 2011]
o Determined via in-depth molecular biological study

Most transcription Pioneer transcription
factors factors

Q ‘3(:’

W e

1- cooperativity allows 1 - independent
nucleosome/chromatin binding nucleosome/chromatin binding
2 - simultaneous binding 2 - precedes other factors binding

with other factors
© Cold Spring Harbor Laboratory Press. All rights reserved. This content is excluded from our

Creative Commons license. For more information, see |http://ocw.mit.edu/help/faq—fair—use/.

Source: Zaret, Kenneth S., and Jason S. Carroll. "Fioneer Transcription Factors: Establishing

[Competence for Gene Expression." Genes & Development 25, no. 21 (2011): 2227-41. Zaret 2011
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Overview of Results

e Claim 1: Protein Interaction Quantitation (P1Q)
accurately predicts transcription factor (TF)
binding from DNase-seq data

e Claim 2: PIQ can identify pioneer factors that
regulate proximal chromatin opening and TF
binding

e Claim 3: Certain pioneer TFs are directional

e Claim 4: Settler factors follow pioneer factor
binding and loss of pioneer binding causes
chromatin to return to a closed state

15
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DNase-seq reveals genome protection profiles
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Bound factors leave distinct DNase-seq profiles
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PIQ: algorithm to predictively model TF
binding from DNase-seq + Sequence
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Motivation and Design goals for PIQ

—

1. Resistance to low coverage and

noisy data | |
Use a Poisson-Gaussian Process

2. Integrate multiple experiments 7 Nearlinear time approximate
inference
3. Scalability to whole genome with

thousands of motifs.
4. High spatial accuracy through

motifs Use a monotone prior to
incorporate side information

5. Robust worst case behavior
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Poisson-GP model estimates the

unoccupied genome

 Our modelis a compound distribution (MVN is
multivariate normal)

c. ~ Poisson(exp(A.))

 We give the correlation between bases a special
stationary structure

Y= ogcor(i — Jj)
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Profiles are tested for significance to eliminate
motif proximal DNase-bias

* Our test statistic is the absolute deviation of log-rates outside the
motif match and its flank.

* The strongest DNase profiles, and those we focused on in our work
all have effects far outside the motif match region.
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PIQ model of TF binding

* The genome is modeled as the sum of smooth terms (A
and factor specific terms.

¢; ~ Poisson(exp(A; +0.7,))
A ~MVN(u,,X)

* v, is the factor specific profile,
* 0, is a binding indicator.

e Each factor’s binding is calculated as a log-likelihood ratio
after adjusting for effects of nearby factor profiles.

* Profiles are estimated via the E-M algorithm.

22
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Likelihood ratio testing for TF binding

OO
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* P, is the factor specific profile,
* L is a binding indicator.

e Each factor’s binding is calculated as a log-

likelihood ratio after adjusting for effects
of nearby factor profiles.
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Add priors to log likelihood ratio and compare
sum to null distribution for significance

L, =f].+gj+logP(Ij Ic,,u)

. fj iS @ monotone motif prior
* g;is a monotone count prior.

* Resultis a rank list of calls; binary calls are
made with a null distribution at p = 0.01

24
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Integrated model

1. Robust model of TF binding that models overlapping
profiles

2. Model of the unoccupied genome using a Gaussian
Process that captures inter-experiment and base
correlations.

3. Better motif models that captures nonlinear PWM to
binding effects.

Observed DNase-seq read ends

l. iuul '..Il [
GOUCGTAL ALCGUCTACCTAATAGUTAAALCG AANCGAA LCOATAGTAG AGTOA CTAAALGO CUCAAGTOCTAGACGT AA ALGGA ACUCA
Expected base-pair accessibility as I Composite likelihood;
Gaussian process marginalization via Expectation Propagation
A

..: . II Time 0
! >
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. Experimental/basal
TF-specific chromatin profile Inter-experiment correlation TF binding rates

Source: Hashimoto, Tatsunori Benjamin. "Computation Identification of Transcription Factor
Binding Using DNase-seq." PhD diss., Massachusetts Institute of Technology, 2014.
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PIQ computational scaling

Attribute | Typical usage Asymptotic scaling

Size of genome in bases
Number of motifs
Number of experiments
Window size

Number of CPUs

Runtime

Memory

2.8 billion

1500 Motifs

10 experiments
400 bases

80 CPUs

~ 1 day clock time
~ 80 days CPU time

~2Gb / CPU

N
L

K

W

M

O(NLK/M + W3K/M + K3)

O(W2K + K?)
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Claim 1: PIQ is highly accurate at predicting TF
binding

Receiver operating characteristic (ROC) curves
show PIQ matches closely with ChIP-seq data.
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* TAUC in mESC
o
O
— )

Falsé Po'sitiVe—)'

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Sherwood, Richard I., Tatsunori Hashimoto, et al. "Discovery of Directional and Nondirectional Pioneer
Transcription Factors by Modeling DNase Profile Magnitude and Shape." Nature Biotechnology 32, no. 2 (2014): 171-8.
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PIQ outperforms existing methods when
predicting binding for 313 ENCODE ChiP-seq
experiments

PIQ (.93 Mean AUC) Centipede (.87); DGF (.65)
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© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Claim 1: PIQ is highly accurate at predicting TF
binding
m  For certain factors concordance with ChiP-bound sites is

AUC 0.9+
= |f a factor is detectable via Dnase-seq PIQ shows high ppv
(70%) with good coverage (50%)
m A factor is Dnase-detectable if
o It has a strong binding motif
o Binds in DNase-accessible regions
o Has strong DNA binding affinity to protect from Dnase

=  Of 302 ENCODE K562 ChlPs, 75 were strongly Dnase
detectable.

29
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Claim 2: PIQ can identify pioneer factors that
regulate proximal chromatin and binding

A typical TF has motif
matches to hundreds of
thousands of locations in
the genome; why are only a

few thousand motifs
bound?
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31

Systematic pioneer identification using PIQ

= Observe chromatin state change over time around all bound
and unbound TF sequence motifs

o Requires DNase-hypersensitive binding site

o Requires TF sequence-specificity

= e.g. ifatz,chromatin is inaccessible:
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In vitro reporter assays recapitulate
computational predictions

Using a Tol2 based GFP reporter, we confirm
finding that these pioneers create new
enhancers.
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Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Sherwood, Richard I., Tatsunori Hashimoto, et al. "Discovery of Directional and Nondirectional Pioneer
Transcription Factors by Modeling DNase Profile Magnitude and Shape." Nature Biotechnology 32, no. 2 (2014): 171-8.
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Claim 3: Certain pioneer TFs are directional

= We define asymmetry index as the expected change between left
and right sides in (squared) chromatin opening index score
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= Biological validation by testing both motif orientations
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Claim 3: Certain pioneer TFs are directional

Orienting the motif direction in the reporter

recapitulates expected directional behaviors.
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opening Index
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Courtesy of Macmillan Publishers Limited. Used with permission.
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Claim 4: Settlers factors follow pioneer factor
binding and loss of pioneer binding causes chromatin
to return to a closed state

Pioneers (chromatin opening and dependent) are rare and

distinct, while there exists a class of chromatin dependent, but
non-opening factors.
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We validate pioneer/settler model via a dominant-
negative competition assay

= Construct pioneer DBD protein that retains no pioneering function

= |Induction of DBD protein competes for genomic binding,
reducing local chromatin accessibility settlers rely on

= Compare proximal chromatin openness
= Compare ChIP levels for neighboring settler binding

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Sherwood, Richard I., Tatsunori Hashimoto, et al. "biscovery of Directional and Nondirectional Pioneer
ITranscription Factors by Modeling DNase Profile Magnitude and Shape." Nature Biotechnology 32, no. 2 (2014): 171-8.
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Dominant negative pioneers reduce proximal
DNase HS

We created dominant negative versions of the NFYA and Nrfl
pioneers and measured DNase accessibility at native NFYA and
Nrfl sites after induction of dominant negatives.

Highly HS 2.5 * p <0.01
wt mES
+—
I -
(7)) T
I3 2 ¢
AR ¢
0O T I
c £15 ?
T O ‘
§ DN NFYA -
DN Nrfl

Non-HS 1 NFYA Nrfl
sites sites

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Sherwood, Richard I., Tatsunori Hashimoto, et al. "Discovery of Directional and Nondirectional Pioneer
Transcription Factors by Modeling DNase Profile Magnitude and Shape." Nature Biotechnology 32, no. 2 (2014): 171-8.
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Dominant negative NFYA reduces binding of

downstream c-Myc

= Relative c-Myc ChIP-qPCR over genomic binding regions with
either NFYA / c-Myc or c-Myc / NFYA to test asymmetry
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Mean c-Myc ChlP
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Pioneers appear to be conserved between

human/mouse
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Overview of Results

* PIQ is highly accurate at predicting
transcription factor (TF) binding from DNase-
seq data

* PIQ can identify pioneer factors regulate
proximal chromatin opening and TF binding

* Certain pioneer TFs are directional

» Settlers factors follow pioneer factor binding
and loss of pioneer binding causes chromatin
to return to a closed state
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Today’s Narrative Arc

1. We can break the epigenetic “code” that describes the
function and state of genome elements using computational
methods. Epigenetic state regulates gene function without
changing primary DNA sequence. Epigenetic state includes
histone marks, DNA methylation, and chromatin openness.

2. We can estimate the protein occupancy of the genome and
discover pioneer factors with DNase-seq via computational
methods.

3. We can map enhancers to their regulatory targets with the
computational analysis of ChlA-PET data (and similar
technologies)
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Enhancers regulate distal target genes by
genome looping

Enhancer

Cohesin
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ChIA-PET protocol - After IP of RNA Pol Il, sonnication,
and ligation, ligation products are sequenced

A

self-ligation inter-ligation

The ChIA-PET Protocol
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ChlA-PET discovered enhancer linkages
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The significance of observing I inter-ligation events between
two binding events A and B can be calculated using a
hypergeometric test

Let I4 p be the number of inter-ligation events between binding events A
and B. Let ¢4 and cg be the number of ligation event ends associated with A
and B, respectively. Let N be the total number of ligation events ends. The
null hypothesis assumes that each ligation event end has an equal probability
of ligating with any other end. Then, under the null hypothesis:

(IZJ?B) (C;V—_IZA,B )

()

min{ca,cp}

P — Z P(i‘N,CA,CB)

1=14a B

P(IA,B|N7 CA, CB)
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Issues with ChlA-PET

1. High false negative rate. Libraries produced are not
complex enough to permit further discovery by additional

seguencing.
Specific to a protein (RNA Polymerase Il in our example)
Hi-C and derivatives may solve these problems eventually

49



Chromatin Structure

Estimating total events from overlap

Imagine we perform two biological replicates of an
experiment and obtain 1000 events in each, of which

900 are identical

We can use a hypergeometric model to infer how many
possible events exist (N) given two sample sizes (m and
n) and an overlap (k):

N = argmax [P(X = k; N, m,n)]
A'N'T
Using this model, we predict ~1100 total events
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Approximate closed form solution for total
number of events

* The ML estimate of N is approximately:
~ mn

N k) = —

(m? n? ) k

* One way to see this is by using the normal
approximation of the binomial approximation to

the hypergeometric distribution:

P(X = k; N,m,n) =~ Binomial (X =k:n=n,p= %
~ NOI‘mal (X — k"u — @’ 0'2 — @(1 _ E))
N N N

)

51



Chromatin Structure

Allowing for false positive events

 What if some events in each replicate are false
positives? Then we will overestimate the total
event count

 We can assume that overlapping (shared) events
are true positives and that (1 —f) of the
remaining events are false negatives, where f is
the true positive rate (TPR)

* This approximation lets us update m and n and
apply the same model:

m =1—-f)(m—k)+k
n=01-Ff)(n—-k) +k
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A higher true positive rate estimates more total
events with a fixed overlap

 Replicate A had 3811 events, replicate B had 1384 events

e The overlap was 533 events
e Likelihood plots versus N for several true positive rates (TPR):
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Today’s Narrative Arc

1. Using computational methods we can break the epigenetic
“code” that describes the function and state of genome
elements. Epigenetic state regulates gene function without
changing primary DNA sequence. Epigenetic state includes
histone marks, DNA methylation, and chromatin openness.

2. We can estimate the protein occupancy of the genome and
discover pioneer factors with DNase-seq via computational
methods.

3. We can map enhancers to their regulatory targets with the
computational analysis of ChlA-PET data (and similar
technologies)
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Today’s Computational Methods

1. Dynamic Bayesian Networks
2. Factor binding classification using a log likelihood ratio
3. Hypergeometric distribution
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