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Central Topic:
Regulation of Mammalian Cell Behavior
by Receptor-Mediated Signaling
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Objective: Learn how cell signaling network

cell / tissue
operation — in multi-pathway manner -- differs phenotypic
between normal and disease state behavior

or among various individuals
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Example: Myriad -- and highly diverse -- genetic alterations
(amplifications, deletions, mutations) across pancreatic
tumors... (as well as in breast, colon, brain)
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© American Association for the Advancement of Science. All rights reserved. This content is excluded
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Source: Jones, Sian, Xiaosong Zhang, et al. "Core Signaling Pathways in Human Pancreatic Cancers
Revealed by Global Genomic Analyses." Science 321, no. 5897 (2008): 1801-6.
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...but diverse mutations lead to dysregulation of a
limited set of key pathways at protein level
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Cell
Signaling
“Circuitry”

Need to
advance
from
Metaphor
to
Model

© Scientific American Library. All rights reserved. This content is excluded from our Creative
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Varmus, H., and R. A. Weinberg. "The Genetic Elements Governing Cancer: Tumor Suppressor

Genes." Genes and The Biology of Cancer (1993): 101-9.

Varmus & Weinberg, Genes & the Biology of Cancer [1993]
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Spectrum of Computational Modeling Methods

SPECIFIED ABSTRACTED
L B
differential
equations _
Boolean/fuzzy logic,
decision trees
Bayesian
. ‘ networks mutual
mechanisms information
logic ‘ regression,
. clustering
influences
topology

. relationships

‘prior knowledge’ needed




Pathway / Interactome Databases
hold substantial prior knowledge

Pathway Databases (Nodes)

Database Pathways Relevant No. Genes Format
GeneGO 700+ 59 804 Table
PANTHER 165 14 1,025 SBML
CellMap (NetPATH) 20 12 625 BioPAX / SIF
Reactome 1081 4 173 BioPAX / SIF
NCI-PID 104 28 459 BioPAX / SIF
KEGG 1000+ 8 564 -
SUMMARY 120 2,054

Interactome Databases (Edges)

Database Type No. Edges Graph type
i2D v1.71 Protein-Protein (Exp) 11,327 Undirected
STRING Integrated Text mining 35,033 Mixture
GeneGo Curated 11,994 Directed, Signed
Cell Map Curated 12,933 Mixture
NCI-PID Curated 14,58 Mixture
Reactome Curated 6,930 Mixture
SUMMARY 68,067 Mixture
‘ INTEROLOGOUS INTERACTION DATABASE / ; PAN T }—l E R
o N 2 Classification System

et s . E:SIRING

© Respective copyright holders. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Pathway / Interactome Databases hold substantial ‘prior knowledge’
for integrative analysis of multi-pathway network effects;
but, there is need to move forward from illustration

to prediction Shortcomings:
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[ak2] [kt ,_\“ l Establish methodology for
Y \/ converting from qualitative
\ i cell pathway topology
/ \ ‘maps’ to quantitatively

computable network models

stat33 statl3 statll

<

Approach:

Employ logic-based
modeling framework, to
train qualitative ‘prior
knowledge’ maps to
quantitative empirical data
for system context and
multi-pathway comparisons
of interest

stat3n statln = =
- atfl = histh3 T pS3

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.



http://ocw.mit.edu/help/faq-fair-use/

More Detailed Insights from Stronger Modeling Analysis

-- integrating empirical data with prior knowledge
using network logic approach

Generic Pathway Map Network Logic Model

(e.g., Ingenuity) Boolean operators:
nodes (=compounds),

signhed directed edges
(activation +, inhibition -)

AND / OR / NOT

12



Example Study: Comparative Hepatocytic Cell Signaling
Network Operation in Inflammation Context
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Multi-Pathway Phosphoproteomic Data —
primary human hepatocytes, HepG2 hepatocellular line

b. Primary human hepatocytes C. Transformed cell line (HepG2 cells)
Signal Control IFNy TNFo L1« IL6 IGF-I TGFo LPS Control IFNy TNFa IL1a IL6 IGF-I TGFa LPS
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-- also cell death, proliferation index, and production of ~50 cytokines
for each condition
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Training Prior Pathway Map Knowledge on
Context-Specific Empirical Signaling Data

TNF EGF

\ v

TNFR EGFR

l PI3K
IKKab 4~ l

\
kb~ ‘AKT

aTNF» (EGP
\J \J
TNFR EGFR

l PI3K
IKKab 4~

A/
(kb AKT

TNF EGP
A
\aND \o8/

IKKab

v
(ko)

TNFLEGP

IKKab

14
(ko>

&

Perform
Experiments

Define Pathway Map
from literature/Database

‘ Import Map )
y

Process Map --7
press & Remove non-observa

Import Data

-

-

Process Data
ormalize between 0,1

e

-~ Y ) ilter noise, saturation
.Create Boolean Scaffol .
DataRail
/ Y
/ Il Il
, 1 BRocse submal ) CellNetOptimizer
7/
, y L\ - 3
/ Compare —_—————
/ experiment - simulation
/
/ Evaluate model
/ Sum deviations + Size
/ v
NO STOP? Analyze A

e g )--

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see|http://ocw.mit.edu/help/faq-fair—use/.

resulting model

EGF TNF
870

Ikb

S
EGF_TNF

i

—
EGF TNF 1

—

o, .
Deviation

TNF EGF

Yoo

TNFR EGFR



http://ocw.mit.edu/help/faq-fair-use/

Automated Development of Logic Network Models
from Fit of Generic Pathway Map to Experimental Data
as an Optimization Problem

Object_ive O = Hf + o HS

Function
Fit to data Relative Size of model
importance _
EE(B’M B’kz) Fit vs. Size 0 = ;Vkpk

=1 K=1 €{0,1} €[0,])

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

» minimize Objective Function (6) across model variants (P),
» trading off model-data error and model size;
» o ascertained by Pareto optimum for false-positive vs false-
negative trade-offs
» obtain family of best-fit models (within 1% of Objective Function
optimum)
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Automated Development of Logic Network Models
from Fit of Generic Pathway Map to Experimental Data
as an Optimization Problem

Genetic Algorithm

1. Initialize a population of model variants (from Ingenuity
scaffold or from random scaffolds)

2. Evaluate objective function (model-vs-data error plus model-
size penalty) for each individual in the population

3. Generate next generation of population using Elite Survival,
Fithess Selection, Mutation, and Crossover

4. Assess whether stop criterion is fulfilled, or iterate back to
step 2

5. Model pruning to reduce model size without detriment to
model-vs-data error

6. 100 runs for each value of model-size penalty o
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lllustration for HepG2
cell line

— improvement in data fit
from best-fit original
scaffold model
to best-fit trained model

Training data fit to ~9% error,

substantially improved from

original scaffold model fit of
>45% error
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Courtesy of EMBO and Nature Publishing Group. License: CC-BY-NC-SA.

lllustration for HepG2
cell line

— consensus model from
fit of empirical data to
initial prior knowledge

scaffold

-- additional arcs needed

to improve model fit,
support in literature
though not in prior
knowledge scaffold
-- arcs present in other cell
line models but not in
HepG2

Source: Saez-Rodriguez, Julio, Leonidas G. Alexopoulos, et al. "Discrete Logic Modelling as a Means to

Link Protein Signalling Networks with Functional Analysis of Mammalian Signal Transduction."

Molecular Systems Biology 5, no. 1 (2009).
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Model size is fairly insensitive to size penalty

Objective function = Fit of data (MSE) + a Size

200 7~

O)
0.2 c
160 | S
— O
G Substantial number of 0159 S
% 120 [ scaffold arcs not supported CU/.J) o
N by hepatocyte data > 2
? 80 T_ —t—o 10.1 + 3
, | 2

40 + - 10.05
. 0 +

0 — = B’ = B
0 10 .10 10 10
Size penalty a

selected model-size penalty,
for maximal predictive capability

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.
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Models can only be partially identified

-- thus model families are best outcome

Frequency of Arc Distribution for Error Tolerance-Related
(i.e., beyond exptl uncertainty) Model Families

1 L —_ —folerance = 0 %, 9 solutions
arc L —folerance = 1 %, 12 solutions
frequency *__tolerance = 10 %, 47 solutions
r 4\ ——tolerance = 47 %, 97 solutions

(5 FEema—— .................................................. -

I N 0% identifiability -

- 3 __\-?\ .

0 40 80 120

Hyperedge index

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Trade-off between False Negatives and False Positives

Receiver Operating Characteristic (ROC) curve
[ratio of true positives (1-false negatives) vs. false positives]
for different values of the size penalty a

Optimal choice of size penalty (a=10-°) corresponds to most
predictive model

Extended model (i.e., with added arcs) decreases false negatives
but increases false positives

ROC Curve

O Scaffold
© Empty

O Calibrated
@ Extended

o
©

o
(o)

— Binary ROC
—> Weighted ROC

©
IN
&=

True positives
True positives

Size penalty a

@ 10° @ 2x10°
O 05 1 @ 5x10° @ 5x103

False positives ® 103 ® >10? 0 002 0.04 0.06
False positives

© source unknown. All rights reserved. This content is excluded from our Creative
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o
\V)

o

23


http://ocw.mit.edu/help/faq-fair-use/

Model Validation
-- successful a priori
predictions of new test data

> Used trained model to a
priori predict effects of
ligand combinations,
additional inhibitors, and
inhibitor combinations

> New test data predicted to
within ~11% error,
e M comparable to ~9% for
original training data

|

5
=

» Can identify loci needing
more detailed inquiry

[
0 0.5 1

B D OOOODO .
Agree Disagree

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faqg-fair-use/.
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Extension to comparison among hepatocellular lines
-- phosphoproteomic data

© American Association for Cancer Research. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/help/faqg-fair-use/.
Source: Saez-Rodriguez, Julio, Leonidas G. Alexopoulos, et al. "Comparing Signaling Networks
Between Normal and Transformed Hepatocytes Using Discrete Logical Models."

Cancer Research 71, no. 16 (2011): 5400-11.
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Demonstration of benefit of
cell type-specific models

Demonstration of capability to
identify particular points
inviting further study

© American Association for Cancer Research. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/help/faqg-fair-use/.
Source: Saez-Rodriguez, Julio, Leonidas G. Alexopoulos, et al. "Comparing Signaling Networks
Between Normal and Transformed Hepatocytes Using Discrete Logical Models."

Cancer Research 71, no. 16 (2011): 5400-11.
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Best-Fit Boolean Logic

Model Families
for Primaries versus
Lines

» Arc width corresponds to
proportion of best-fit models
bearing it

« Black arcs — all models in
both primaries and HCC
lines

* Blue arcs — most or all
primary models

 Red arcs — most or all HCC
line models

* Gray arcs deleted from
original scaffold

 Dashed arc added to
account for especially
recalcitrant data

© American Association for Cancer Research. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Source: Saez-Rodriguez, Julio, Leonidas G. Alexopoulos, et al. "Comparing Signaling Networks

Between Normal and Transformed Hepatocytes Using Discrete Logical Models."
Cancer Research 71, no. 16 (2011): 5400-11.
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Best-Fit Boolean Logic

Model Families
for Primaries versus
Lines

+ ~90% of original scaffold
interactions were found in at
least one best-fit model
across families for all cell
types

* but only <10% were found
both in most primary cell
models and cell line models
 multiple pathways are
identifiable as dysregulated
from normal to tumor lines

© American Association for Cancer Research. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/help/faqg-fair-use/.

Source: Saez-Rodriguez, Julio, Leonidas G. Alexopoulos, et al. "Comparing Signaling Networks

Between Normal and Transformed Hepatocytes Using Discrete Logical Models."
Cancer Research 71, no. 16 (2011): 5400-11.
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Model permits novel
insights concerning
drug actions

Dashed arc added to fit data
generated in presence of
IKK inhibitor TPCA1

— two potential
explanations:

» IKK activity suppresses
STAT3 activity downstream
of JAK2;

or

« TPCA1 has off-target
effect on JAK2

© American Association for Cancer Research. All rights reserved. This content is excluded from our

Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Saez-Rodriguez, Julio, Leonidas G. Alexopoulos, et al. "Comparing Signaling Networks

Between Normal and Transformed Hepatocytes Using Discrete Logical Models."
Cancer Research 71, no. 16 (2011): 5400-11.
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Experimental validation of model prediction that putative
IKK inhibitor TPCA1 hits JAK2 as an off-target substrate

(whereas BMS-345541 does not)

in vivo Kinase Assay in vitro Kinase Assay
e
1.2} 1 1.2t
1 femeememe e «\ AL 1% T ’+_
0.8l ¥ 0.8l ‘?——-" ...perhaps
NaKe providing an
activity 0.6; 050 = 5.1 UM 0.6} G50 = 440 nM— :
0.4} =oE 0.4} (Ki = 9.0 nM) explanation for
0.2 [ e TPCA1 0.2| Why TPCA1 has
0 || === BMS-345541 ol been found to be
10 9 8 7 6 5 10 9o 38 78 s more efficacious
for airway
) ) inflammation
1.2} { 1.2}
o o | treatment than
0.8} ) 0.8} ?t:_ebr_:KK
IKK-2 inhibitors
activity 0.6 0-8F  \cs0=32nMm
0.4} 0.4 (Ki=1.4nM) S
0.2} 0.2} -
0 ‘ ) IC§0 = 5;7pM . . 0} ) ~IC50=11uM =
10 -9 -8 -7 -6 -5 10 9 -8 -7 6 -5
log[inhibitor], M log[inhibitor], M

© American Association for Cancer Research. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Saez-Rodriguez, Julio, Leonidas G. Alexopoulos, et al. "Comparing Signaling Networks
Between Normal and Transformed Hepatocytes Using Discrete Logical Models."

Cancer Research 71, no. 16 (2011): 5400-11.
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Best-Fit Boolean Logic
Model Families
-- comparison among
HCC Lines

» cell-type specificity of
network operation is thus
explicitly characterized —
not only contrasting
primaries to tumor lines
but also disparities
between different tumor
lines
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Cell types can be quantitatively clustered

with respect to common edges
-- reasonable similarity to transcriptomic result
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Detailed Primary-vs-Lines Comparison

- 8 edges are

strongly disparate

between primary

hepatocytes and the

HCC lines
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Detailed Primary-vs-Lines Comparison — insights gained

 Whereas EGFR leads to
ERK activation in all cell
types, HSP27 is
significantly activated
downstream of ERK only in
primaries

* In the lines, HSP27 was
activated more mildly and
via p38 instead of via ERK
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Detailed Primary-vs-Lines Comparison — insights gained

* In primaries lkb
phosphorylation
requires TNFa-NIK and
activation of PI3K-JNK
(via TGFa or Ins),
whereas in lines only

TNFa-NIK is required
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Detailed Primary-vs-Lines Comparison — insights gained
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These same three pathways have been implicated in
combination kinase therapy for HCC

IKK Akt p38
=
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b
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One-input interactions: How does C depend on A?
where n is the hill coefficient, k specifies the EC_50 for each gate and
a and c are the quantitative levels of their respective species (A and C)
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Two-input interactions: How is C evaluated when both A and B affect it?

where subscript 1 and 2 indicate the gate-specific parameters
of the A-to-C and B-to C interactions, respectively.

A Ao B A orR B
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Courtesy of Morris et al. License: CC-BY.

Source: Morris, Melody K., Julio Saez-Rodriguez, et al. "Training Signaling Pathway Maps to Biochemical Data
with Constrained Fuzzy Logic: Quantitative Analysis of Liver Cell Responses to Inflammatory Stimuli."
PLoS Computational Biology 7, no. 3 (2011): €1001099.
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HepG2 Constrained Fuzzy Logic Network Model

(again consensus family)
Extracellular
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Source: Morris, Melody K., Julio Saez-Rodriguez, et al. "Training Signaling Pathway Maps to Biochemical Data

with Constrained Fuzzy Logic: Quantitative Analysis of Liver Cell Responses to Inflammatory Stimuli."
PLoS Computational Biology 7, no. 3 (2011): €1001099.

Intensity of arc = likelihood of connection

Numerical descriptor = upstream-downstream effect strength

% = new arcs not identified by Boolean model
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Example Results for Quantitative Cell Circuit Logic
-- downstream ‘child’ node versus upstream ‘parent’ nodes

Red points: experimental values
Gray points: averaged-model predictions
: individual model predictions
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New test data fell within
one standard deviation
of predictions
across all conditions 40
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Model family precision generally presages accuracy

Courtesy of Morris et al. License: CC-BY.
Source: Morris, Melody K., Julio Saez-Rodriguez, et al. "Training Signaling Pathway Maps to Biochemical Data
with Constrained Fuzzy Logic: Quantitative Analysis of Liver Cell Responses to Inflammatory Stimuli."
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