
• L12 - Introduction to Protein Structure; 
Structure Comparison & Classification     

• L13 - Predicting protein structure  
• L14 - Predicting protein interactions  
• L15 - Gene Regulatory Networks  
• L16 - Protein Interaction Networks  
• L17 - Computable Network Models  
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Predictions 

Last time: protein structure Now: protein interactions 

 

© American Association for the Advancement of Science. All rights reserved.
This content is excludedfrom our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Lindorff-Larsen, Kresten, Stefano Piana, et al. "How Fast-folding
Proteins Fold." Science 334, no. 6055 (2011): 517-20.

© source unknown. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see
http://ocw.mit.edu/help/faq-fair-use/.
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Prediction Challenges 

• Predict effect of point mutations 
• Predict structure of complexes 
• Predict all interacting proteins 
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•DOI: 10.1002/prot.24356  

“Simple” challenge: 
Starting with known 
structure of a complex: 
predict how much a 
mutation changes binding 
affinity. 

 

© Wiley Periodicals, Inc. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Moretti, Rocco, Sarel J. Fleishman, et al. "Community‐wide Evaluation of Methods for
Predicting the Effect of Mutations on Protein–protein Interactions." Proteins: Structure, Function, and
Bioinformatics 81, no. 11 (2013): 1980-7.
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•DOI: 10.1002/prot.24356  

BLOSUM 

First Round 

Second Round.  (Given data 
for nine random mutations at 
each position) 

Area under curve for predictions (varying cutoff in ranking) 

 

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Predicting Structures of Complexes 

• Can we use structural data to 
predict complexes? 

• This might be easier than 
quantitative predictions for site 
mutants. 

• But it requires us to solve a 
docking problem 

© source unknown. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see
http://ocw.mit.edu/help/faq-fair-use/.
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Docking 

N. Tuncbag 

Which surface(s) of 
protein A interactions 
with which surface of 
protein B? 

Courtesy of Nurcan Tuncbag. Used with permission.
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Docking 
Imagine we wanted to 
predict which proteins 
interact with our favorite 
molecule. 
For each potential partner: 

•Evaluate all possible 
relative positions and 
orientations 

•allow for structural 
rearrangements 

•measure energy 
of interaction 

This approach would be extremely 
slow! 
It’s also prone to false positives. 

Why? 

Courtesy of Nurcan Tuncbag. Used with permission.
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Reducing the search space 

• Efficiently choose potential partners before 
structural comparisons 

• Use prior knowledge of interfaces to focus 
analysis on particular residues 
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Next 

PRISM 
Fast and accurate modeling of 

protein-protein 
interactions by combining 
template-interface-based 
docking with flexible 
refinement. 

Tuncbag N, Keskin O, Nussinov 
R, Gursoy A. 

http://www.ncbi.nlm.nih.gov/
pubmed/22275112 
 

PrePPI 
Structure-based prediction of 

protein–protein 
interactions on a genome-
wide scale 

 
 
Zhang, et al.  
http://www.nature.com/natur

e/journal/v490/n7421/full/
nature11503.html 
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PRISM’s Rationale 

There are limited number of protein “architectures”. 
 
Protein structures can interact via similar architectural 
motifs even if the overall structures differ 
 
Find particular surface regions of proteins that are 
spatially similar to the complementary partners of a 
known interface 

N. Tuncbag 
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• Two components:  
– rigid-body structural comparisons of target 

proteins to known template protein-protein 
interfaces  

– flexible refinement using a docking energy 
function.  

• Evaluate using structural similarity and 
evolutionary conservation of putative binding 
residue 'hot spots'.  

PRISM’s Rationale 

N. Tuncbag 
12



Subtilisin and its inhibitors 
Although global folds of Subtilisin’s partners are very different, binding regions 
are structurally very conserved. 

N. Tuncbag 
Courtesy of Nurcan Tuncbag. Used with permission. 13



Hotspots 

Figure from Clackson & Wells (1995). 

© American Association for the Advancement of Science. All rights reserved. This content is excluded
from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Clackson, Tim and James A. Wells. "A Hot Spot of Binding Energy in a Hormone-Receptor
Interface." Science 267, no. 5196 (1995): 383-6.
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Hotspots 

Figure from Clackson & Wells (1995). 

© American Association for the Advancement of Science. All rights reserved. This content is excluded
from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Clackson, Tim and James A. Wells. "A Hot Spot of Binding Energy in a Hormone-Receptor
Interface." Science 267, no. 5196 (1995): 383-6.
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• Fewer than 10% of the residues at an interface 
contribute more than 2 kcal/mol to binding.   

• Hot spots  
– rich in Trp, Arg and Tyr  
– occur on pockets on the two proteins that have 

complementary shapes and distributions of 
charged and hydrophobic residues.   

– can include buried charge residues far from 
solvent 

– O-ring structure excludes solvent from interface 
 

http://onlinelibrary.wiley.com/doi/10.1002/prot.21396/full 
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Ikb 

NFkB 

N. Tuncbag 

1. Identify interface of 
template (distance 
cutoff) 

Courtesy of Nurcan Tuncbag. Used with permission. 17



Ikb 

NFkB 

N. Tuncbag 

1. Identify interface of 
template (distance 
cutoff) 

Courtesy of Nurcan Tuncbag. Used with permission. 18



Ikb 

NFkB 

N. Tuncbag 

1. Identify interface of 
template (distance 
cutoff) 

Courtesy of Nurcan Tuncbag. Used with permission.
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Ikb 

NFkB 

N. Tuncbag 

ASPP2 1. Identify interface of 
template (distance 
cutoff) 

2. Align entire surface of 
query to half-interfaces 

3. Test 
1. Overall structural match 
2. Structural match of at 

hotspots 
3. Sequence match at 

hotspots 

 

Courtesy of Nurcan Tuncbag. Used with permission. 20



NFkB 

N. Tuncbag 

ASPP2 1. Identify interface of 
template (distance 
cutoff) 

2. Align entire surface of 
query to half-interfaces 

3. Test 
1. Overall structural match 
2. Structural match of at 

hotspots 
3. Sequence match at 

hotspot 

4. Flexible refinement 
 

Courtesy of Nurcan Tuncbag. Used with permission. 21



Flowchart 

Structural match of template and target  
does not depend on order of residues 

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Tuncbag, Nurcan, Attila Gursoy, et al. "Predicting Protein-protein Interactions on a Proteome  Scale by Matching Evolutionary and
Structural Similarities at Interfaces using PRISM." Nature Protocols 6, no. 9 (2011): 1341-54.
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Predicted p27 Protein Partners 

p27 

Cdk2 

CycA 

ERCC1 

TFIIH 

Cks1 

∆Gcalc= - 29.54 kcal/mol ∆Gcalc= - 37.51 kcal/mol ∆Gcalc= - 44.06 kcal/mol 

N. Tuncbag 
Courtesy of Nurcan Tuncbag. Used with permission. 23



Next 

PRISM 
Fast and accurate modeling of 

protein-protein 
interactions by combining 
template-interface-based 
docking with flexible 
refinement. 

Tuncbag N, Keskin O, Nussinov 
R, Gursoy A. 

http://www.ncbi.nlm.nih.gov/
pubmed/22275112 
 

PrePPI 
Structure-based prediction of 

protein–protein 
interactions on a genome-
wide scale 

 
 
Zhang, et al.  
http://www.nature.com/natur

e/journal/v490/n7421/full/
nature11503.html 
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Structure-based prediction of protein–protein interactions on a genome-wide scale 
Nature 490, 556–560 (25 October 2012) doi:10.1038/nature11503  

PrePPI 
Scores potential templates without building a 
homology model 
Criteria 

Geometric similarity between the protomer and template 
Statistics based on preservation of contact residues 

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Zhang, Qiangfeng Cliff, Donald Petrey, et al. "Structure-based Prediction of Protein-protein
Interactions on a Genome-wide Scale." Nature 490, no. 7421 (2012): 556-60.
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Structure-based prediction of protein–protein interactions on a genome-wide scale 
Nature 490, 556–560 (25 October 2012) doi:10.1038/nature11503  

1. Find homologous proteins of known structure (MA,MB) 
2. Find structural neighbors  (NA

i

,NB
i

)(avg:1,500 neighbors/structure) 3. Look for structure of a complex containing structural neighbors 
4. Align sequences of MA,MB to NA,NB based on structure 

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Zhang, Qiangfeng Cliff, Donald Petrey, et al. "Structure-based Prediction of Protein-protein
Interactions on a Genome-wide Scale." Nature 490, no. 7421 (2012): 556-60.
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Structure-based prediction of protein–protein interactions on a genome-wide scale 
Nature 490, 556–560 (25 October 2012) doi:10.1038/nature11503  

1. Find homologous proteins of known structure (MA,MB) 
2. Find structural neighbors  (NAi,NBi)(avg:1,500 neighbors/structure) 
3. Look for structure of a complex containing structural neighbors 4. Align sequences of MA,MB to NA,NB based on structure 

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Zhang, Qiangfeng Cliff, Donald Petrey, et al. "Structure-based Prediction of Protein-protein
Interactions on a Genome-wide Scale." Nature 490, no. 7421 (2012): 556-60.
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Structure-based prediction of protein–protein interactions on a genome-wide scale 
Nature 490, 556–560 (25 October 2012) doi:10.1038/nature11503  

1. Find homologous proteins of known structure (MA,MB) 
2. Find structural neighbors  (NAi,NBi)(avg:1,500 neighbors/structure) 
3. Look for structure of a complex containing structural neighbors 
4. Align sequences of MA,MB to NA,NB based on structure 

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Zhang, Qiangfeng Cliff, Donald Petrey, et al. "Structure-based Prediction of Protein-protein
Interactions on a Genome-wide Scale." Nature 490, no. 7421 (2012): 556-60.
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Structure-based prediction of protein–protein interactions on a genome-wide scale 
Nature 490, 556–560 (25 October 2012) doi:10.1038/nature11503  

1. Find homologous proteins of known structure (MA,MB) 
2. Find structural neighbors  (NAi,NBi)(avg:1,500 neighbors/structure) 
3. Look for structure of a complex containing structural neighbors 
4. Align sequences of MA,MB to NA,NB based on structure 

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Zhang, Qiangfeng Cliff, Donald Petrey, et al. "Structure-based Prediction of Protein-protein
Interactions on a Genome-wide Scale." Nature 490, no. 7421 (2012): 556-60.
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Structure-based prediction of protein–protein interactions on a genome-wide scale 
Nature 490, 556–560 (25 October 2012) doi:10.1038/nature11503  

1. Find homologous proteins of known structure (MA,MB) 
2. Find structural neighbors  (NAi,NBi)(avg:1,500 neighbors/structure) 
3. Look for structure of a complex containing structural neighbors 
4. Align sequences of MA,MB to NA,NB based on structure 

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Zhang, Qiangfeng Cliff, Donald Petrey, et al. "Structure-based Prediction of Protein-protein
Interactions on a Genome-wide Scale." Nature 490, no. 7421 (2012): 556-60.
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NA 

NA 

NB 

NB 

1. Identify interacting residues in template complex 
(Called NA1 NB3 in rest of paper) 

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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NA 

NA 

NB 

NB 

1. Identify interacting residues in template complex 
(Called NA1 NB3 in rest of paper) 

2. Predict interacting residues for the homology models 

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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NA 

NA 

NB 

NB 

Evaluate based 
on five measures 

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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NA 

NA 

NB 

NB 

Evaluate based on 
five measures: 
•SIM: structural 
similarity of NA,MA 
and NB,MB 

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. 34
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Evaluate based on five measures: 
•SIM: structural similarity of NA,MA and NB,MB 
•SIZ (number) COV (fraction) of interaction pairs can be aligned 
anywhere 
•OS subset of SIZ at interface 
•OL number of aligned pairs at interface 

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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“The final two scores reflect whether the residues that 
appear in the model interface have properties consistent 
with those that mediate known PPIs (for example, residue 
type, evolutionary conservation, or statistical propensity to 
be in protein–protein interfaces).”   ???? 

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. 36
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Structure-based prediction of protein–protein interactions on a genome-wide scale 
Nature 490, 556–560 (25 October 2012) doi:10.1038/nature11503  

1. Find homologous proteins of known structure (MA,MB) 
2. Find structural neighbors  (NAi,NBi)(avg:1,500 

neighbors/structure) 
3. Look for structure of a complex containing structural 

neighbors 
4. Align sequences of MA,MB to NA,NB based on structure 
5. Compute five scores 
6. Train Bayesian classifier using “gold standard” interactions 

 

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Zhang, Qiangfeng Cliff, Donald Petrey, et al. "Structure-based Prediction of Protein-protein
Interactions on a Genome-wide Scale." Nature 490, no. 7421 (2012): 556-60.
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1. Find homologous proteins of known structure (MA,MB) 
2. Find structural neighbors  (NAi,NBi)(avg:1,500 

neighbors/structure) 
3. Look for structure of a complex containing structural 

neighbors 
4. Align sequences of MA,MB to NA,NB based on structure 
5. Compute five scores 
6. Train Bayesian classifier using “gold standard” interactions 

 We will examine Bayesian classifiers soon 

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Zhang, Qiangfeng Cliff, Donald Petrey, et al. "Structure-based Prediction of Protein-protein
Interactions on a Genome-wide Scale." Nature 490, no. 7421 (2012): 556-60.
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Outline 

• Structural prediction of protein-protein 
interactions 

• High-throughput measurement of protein-
protein interactions 

• Estimating interaction probabilities 
• Bayes Net predictions of protein-protein 

interactions 
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Proteomics: Protein complexes take the bait 
Anuj Kumar and Michael Snyder 
Nature 415, 123-124(10 January 2002) 
doi:10.1038/415123a 

Gavin, A.-C. et al. Nature 
415, 141-147 (2002). 
 
Ho, Y. et al. Nature 415, 
180-183 (2002). 

Detecting protein-protein 
interactions 

What are the 
likely false 
positives? 
 
What are the 
likely false 
negatives? 
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Courtesy of Macmillan Publishers Limited.
Used with permission.
Source: Kumar, Anuj, and Michael Snyder. "Proteomics:
 Protein Complexes take the Bait." Nature 415, no. 6868
 (2002): 123-4. 40
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Mass-spec for protein-protein 
interactions 

• Extremely efficient method for detecting 
interactions 

• Proteins are in their correct subcellular 
location. 

Limitations? 
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Mass-spec for protein-protein 
interactions 

• Extremely efficient method for detecting 
interactions 

• Proteins are in their correct subcellular 
location. 

Limitations? 
• overexpression/tagging can influence results 
• only long-lived complexes will be detected 
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Tagging strategies 

TAP-tag (Endogenous protein levels) 
Tandem purification 
1. Protein A-IgG purification 
2. Cleave TEV site to elute 
3. CBP-Calmodulin purification 
4. EGTA to elute 
 

Gavin et al. (2002) Nature. 

Ho et al. (2002) Nature over-expressed proteins and used only one tag.    

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Gavin, Anne-Claude, Markus Bösche, et al. "Functional Organization of the Yeast Proteome by
Systematic Analysis of Protein Complexes." Nature 415, no. 6868 (2002): 141-7.
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Biotechniques. 2008 Apr;44(5):655-62. 
Ratushny V, Golemis E. 

How does this compare to  
mass-spec based 
approaches 

Yeast two-hybrid 

Courtesy of BioTechniques. Used with permission.
Source: Ratushny, Vladimi, and Erica A. Golemis. "Resolving the Network of Cell Signaling Pathways
using the Evolving Yeast Two-hybrid System." Biotechniques 44, no. 5 (2008): 655.
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•Does not require 
purification – will pick up 
more transient 
interactions. 
 
•Biased against proteins 
that do not express well, 
or are incompatible with 
the nucleus 

Biotechniques. 2008 Apr;44(5):655-62. 
Ratushny V , Golemis E. 

Courtesy of BioTechniques. Used with permission.
Source: Ratushny, Vladimi, and Erica A. Golemis. "Resolving the Network of Cell
Signaling Pathways using the Evolving Yeast Two-hybrid System." Biotechniques
44, no. 5 (2008): 655.
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Outline 

• Structural prediction of protein-protein 
interactions 

• High-throughput measurement of protein-
protein interactions 

• Estimating interaction probabilities 
• Bayes Net predictions of protein-protein 

interactions 
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Error Rates 

• How can we estimate the error rates? 
 

 

Gold 
standard Experiment 

False 
negatives 

True 
positives 

True 
positives 

and 
false 

positives 
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Error Rates 

Gold standard 

Experiment 
1 

Experiment 
2 

True 
positives 

from 
gold standard 
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Data Integration 

Gold standard 

Experiment 
1 

Experiment 
2 

I =True 
positives 

from 
gold standard 

II=Consensus 
true 

positives 

I 

II 

Fraction of consensus present in gold standard=I/II 
49



Data Integration 

Gold standard 

Experiment 
1 

I =True 
positives 

from 
gold standard 

II=Consensus 
true 

positives 

I 

II 

Fraction of consensus present in gold standard=I/II 

Mix of 
true and false 

positives 

III 
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Data Integration 

Gold standard 

Experiment 
1 

I =True 
positives 

from 
gold standard 

II=Consensus 
true 

positives 

I 

II 

Fraction of consensus present in gold standard=I/II 

Define: 
IV =  

true positives 
V =  

false 
positives 

IV 
true 

V false 

III 
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Data Integration 

Gold standard 

Experiment 
1 

I =True 
positives 

from 
gold standard 

II=Consensus 
true 

positives 

I 

II 

Fraction of consensus present in gold standard=I/II 

Assume 
I/II=III/IV 

IV 
true 

V false 

III 
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Estimated Error Rates 

False positives 

True positives 

How complete are current yeast and human protein-interaction networks? 
G Traver Hart, Arun K Ramani and Edward M Marcotte 
Genome Biology 2006, 7:120doi:10.1186/gb-2006-7-11-120 

I= 

II= 

III= 

Assume that all of regions I and 
II are true positives. 
 
If MIPS has no bias toward 
either Krogan or Gavin,  
 
then the fraction of TP in MIPS 
will be the same in the common 
data (I/II) and the unique data 
(III/IV)  
 
I  = III 
II    IV 

Courtesy of BioMed Central Ltd. Used with permission.
Source: Hart, G. Traver, Arun K. Ramani, et al. "How Complete are Current Yeast and Human Protein-
interaction Networks." Genome Biology 7, no. 11 (2006): 120.
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Courtesy of BioMed Central Ltd. Used with permission.
Source: Hart, G. Traver, Arun K. Ramani, et al. "How Complete are Current Yeast and Human Protein interaction Networks."
Genome Biology 7, no. 11 (2006): 120.
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Finding real interactions 

• Take only those that are reported by >1 
method? 

• Filter out “sticky” proteins? 
• Estimate probability of each interaction based 

on data. 
• Use external data to predict 

55



Comparative assessment of large-scale data sets of protein–protein interactions 
von Mering, et al. Nature 417, 399-403 (23 May 2002) | doi:10.1038/nature750 

Note:  log-log plot! 
Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Von Mering, Christian, Roland Krause, et al. "Comparative Assessment of  Large-scale Data
Sets of Protein–protein Interactions." Nature 417, no. 6887 (2002): 399-403.
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Finding real interactions 

• Estimate probability of each interaction based 
on data.   
– How can we compute                                  ? ( )_ |P real PPI Data

( _ , _ , _ , _ , )Data two hybrid mass spec co evolution co expression= 

( , )Data mass_spec_expt_1,mass_spec_expt_2= 

or 
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Bayes Rule 

posterior  prior  likelihood 

58



Naïve Bayes Classification 

posterior  prior  likelihood 

likelihood ratio = ratio of posterior probabilities 

if > 1 classify as true 
if < 1 classify as false 

How do we compute this ? 
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likelihood ratio = if > 1 classify as true 
if < 1 classify as false 

log likelihood ratio =  

Prior probability is the same for all interactions 
--does not affect ranking 
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likelihood ratio = if > 1 classify as true 
if < 1 classify as false 

log likelihood ratio =  

Prior probability is the same for all interactions 
--does not affect ranking 

Ranking function =  
( | _ )log
( | _ )

P Data true PPI
P Data false PPI

 
 
 
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We assume the observations are independent 
(we’ll see how to handle dependence soon) 
 

Ranking function =  

( | _ )log
( | _ )

P Data true PPI
P Data false PPI

 
 
 
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We assume the observations are independent 
(we’ll see how to handle dependence soon) 
 
 
 

Ranking function =  

( | _ )( | _ )log
( | _ ) ( | _ )

M
i

i i

P Observation true PPIP Data true PPI
P Data false PPI P Observation false PPI

 
= 

 
∏
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We assume the observations are independent 
(we’ll see how to handle dependence soon) 
 
We can compute these terms if we have a set of high-
confidence positive and negative interactions . 
 
Exactly how we compute the terms depends on the 
type of data. 
 
For affinity purification/mass spec. see 
Collins et al. Mol. Cell. Proteomics 2007 
http://www.mcponline.org/content/6/3/439.long 
 
 

Ranking function =  

( | _ )( | _ )log
( | _ ) ( | _ )

M
i

i i

P Observation true PPIP Data true PPI
P Data false PPI P Observation false PPI

 
= 

 
∏
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Comparative assessment of large-scale data sets of protein–protein interactions 
von Mering, et al. Nature 417, 399-403 (23 May 2002) | doi:10.1038/nature750 

Instead of requiring 
an interaction to be 
detected in all assays, 
we can rank by 

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Von Mering, Christian, Roland Krause, et al. "Comparative Assessment of  Large-scale
Data Sets of Protein–protein Interactions." Nature 417, no. 6887 (2002): 399-403.
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Collins et al. Mol. Cell. Proteomics 2007 

Compute using high-
confidence negatives 

FP/(TN+FP) 
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ROC curve 

True positives = ? 
 
True negatives = ?  

Source: Collins, Sean R., Patrick Kemmeren, et al. "Toward a Comprehensive Atlas of the Physical
Interactome of Saccharomyces Cerevisiae." Molecular & Cellular Proteomics 6, no. 3 (2007): 439-50.
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Collins et al. Mol. Cell. Proteomics 2007 

Compute using high-
confidence negatives FP/(TN+FP) 
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True positives = interactions 
between proteins that occur in a 
complex annotated in a human-
curated database (MIPS or SGD). 
 
True negatives =  proteins pairs 
that 
   1. are annotated to belong to 
distinct complexes 
   2. have different sub-cellular 
locations OR anticorrelated mRNA 
expression 
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9074 interactions 

Compute using high-
confidence negatives 
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Literature curated 
(excluding 2-hybrid) 

Error rate 
equivalent to 

literature curated 
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9074 interactions 

Compute using high-
confidence negatives 
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Outline 

• Structural prediction of protein-protein 
interactions 

• High-throughput measurement of protein-
protein interactions 

• Estimating interaction probabilities 
• Bayes Net predictions of protein-protein 

interactions 
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Bayesian Networks 

A method for using probabilities to 
reason 
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In Biology 

• Gene regulation 
• Signaling 
• Prediction 
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• Bayesian Networks are a tool for reasoning 
with probabilities 

• Consist of a graph (network) and a set of 
probabilities 

• These can be “learned” from the data 

Bayesian Networks 
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Bayesian Networks 

A “natural” way to think about 
biological networks. 
 
 

Predict unknown variables from 
observations 
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Bayesian Networks 

You could try to write out all the 
joint probabilities: 
P(PPI|Y2HUetz, Y2HIto, IPGavin, IPHo) 
 
 
 

© American Association for the Advancement of Science. All rights reserved.
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for Predicting Protein-protein Interactions from Genomic Data." Science 302,
no. 5644 (2003): 449-53.
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Bayesian Networks 

You could try to write out all the 
joint probabilities: 
P(PPI|Rosetta,CC,GO,MIPS,ESS) 
 
But some problems are too big! 
 
 

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Yang, Xia, Joshua L. Deignan, et al. "Validation of Candidate Causal Genes for Obesity that Affect Shared Metabolic Pathways and Networks."
Nature genetics 41, no. 4 (2009): 415-23.
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Bayesian Networks 

• Complete joint probability tables are large and 
often unknown 

• N binary variables = 2N states 
– only one constraint (sum of all probabilities =1)  

 => 2N - 1 parameters 
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Graphical Structure Expresses our 
Beliefs 

P1-P2 
REAL 

Detected 
by X1 

Detected 
by Xn 

… 

Cause  (often “hidden”) 

Effects (observed) 
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Graphical Structure Expresses our 
Beliefs P1-P2 

REAL 

Detected 
by X1 

Detected 
by Xn 

… 

P1-P2 
REAL 

Detected 
by X1 

Detected 
by Xn … Detected 

by Xj 
Detected 
by Xj+1 … 

Membrane Highly 
expressed 
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Graphical Structure Expresses our 
Beliefs P1-P2 

REAL 

Detected 
by X1 

Detected 
by Xn 

… 

P1-P2 
REAL 

Detected 
by X1 

Detected 
by Xn … Detected 

by Xj 
Detected 
by Xj+1 … 

Membrane Highly 
expressed 

Naïve Bayes assumes all 
observations are 
independent 

But some observations 
may be coupled. 

80



Graphical Structure Expresses our 
Beliefs P1-P2 

REAL 

Detected 
by X1 

Detected 
by Xn 

… 

P1-P2 
REAL 

Detected 
by X1 

Detected 
by Xn … Detected 

by Xj 
Detected 
by Xj+1 … 

Membrane Highly 
expressed 

• The graphical structure can be decided in advance 
based on knowledge of the system or learned from 
the data.  

81



Graphical Structure  
In a Bayesian Network, we 
don’t need the full probability 
distribution. 
 
A node is independent of its 
ancestors given its parents. 
 
For example: 
 The activity of a gene 
does not depend on the 
activity of TF A1 once I know 
TF B2. 
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Grades 

Smart 

Automated Admissions Decisions 
Grade 

inflation 

GREs 

Prediction: we observe the “causes” 
(roots/ parents) and want to predict 
the “effects” (leaves/children). 

Given Grades, GREs will we admit? 

Inference: we observe the 
“effects” (leaves/ children) and 
want to infer the hidden values of 
the “causes” (roots/parents) 

You meet an admitted the 
student.  Is s/he smart? 

Admit 
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Grades 

Smart 

Automated Admissions Decisions 
Grade 

inflation 

GREs 

Admit 

Making predictions/inferences 
requires knowing the joint 
probabilities: 
 
P(admit, grade inflation, smart, 
grades, GREs) 
 
We will find conditional probabilities 
to be very useful 
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S G  
(above 

threshold) 

P(S,G) 

F F 0.665 

F T 0.035 

T F 0.06 

T T 0.24 

Automated Admissions Decisions 
Joint Probability 

S P(G=F|S) P(G=T|S) 

F 0.95 0.05 

T 0.2 0.8 

P(S=F)=0.7 P(S=T)=0.3 

Grades 

Smart 

Conditional Probability 

Formulations are equivalent and both require same number of constraints. 
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Grades 

Smart 

Automated Admissions Decisions 
Grade 

inflation 

GREs 

In a Bayesian Network, we don’t 
need the full probability 
distribution. 
 
The joint probability depends only 
on “parents.” 
 
For example: 
 GRE scores do not depend 
on the level of grade inflation at 
the school, but the grades do. 
 
 
 

Admit 

86



“Explaining Away” Season 

S 
Sprinkler 

R 
Rain 

Grass  
wet 

Does the probability that it’s raining 
depend on whether the sprinkler is on? 
  

Slippery 

 
In a causal sense, clearly not.   
 
But in a probabilistic model, 
the knowledge that it is 
raining influences our beliefs.  
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Coin 
1 

Coin 
2 

Score 

p(C2=H)=p(C2=T) =. 5 p(C1=H)=p(C1=T) =. 5 

C1 C2 Score 

H H 1 

T T 1 

H T 0 

T H 0 

Does the prob. that C1 =H on depend on whether C2 =T? 
If we know the score, then our belief in the state of 
C1 is influenced by our belief in the state C2. 

“Explaining Away” 
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How do we obtain a BN? 

• Two problems:  
– learning graph structure 

• NP-complete 
• approximation algorithms 

– probability distributions 
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Learning Models from Data 

• Assume we know the structure, how do we 
find the parameters? 

• Define an objective function and search for 
parameters that optimize this function. 
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Learning Models from Data 

• Two common objective functions 
– Maximum likelihood: 

• Define the likelihood over training data {Xi}:  
 
 

– Maximum posterior:  
 

• Good search algorithms exist:  
– Gradient descent, EM, Gibbs Sampling, … 
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Learning Models from Data 

Coin 
1 

Coin 
2 

Score 

p(C2=H)=? 
p(C2=T) =? 

p(C1=H)=? 
p(C1=T) =? 

C1 C2 Score 

H H ? 

T T ? 

H T ? 

T H ? 

D= {(C1,C2,S)} = {(H,T,0), (H,H,1) …} 
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Learning Models from Data 

• Searching for the BN structure:  NP-complete 
– Too many possible structures to evaluate all of 

them, even for very small networks. 
– Many algorithms have been proposed 
– Incorporated some prior knowledge can reduce 

the search space.   
• Which measurements are likely independent? 
• Which nodes should regulate transcription?   
• Which should cause changes in phosphorylation? 
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Resources to learn more 

Kevin Murphy’s tutorial: http://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html 
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A worked “toy” example 

Best to work through on your own 
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Chain Rule of Probability for 
Bayes Nets 

G 
Grade

s 

S 
Smart 

R 
GREs 

A 
Admit 

P(S,G,R,D) = P(S)P(G|S)P(R|G,S)P(A|S,G,R) 

                   = P(S)P(G|S)P(R|S)P(A|G,R)    (why?) 

(because of conditional independence assumption) 

Recall: 
P(X,Y) = P(X|Y)P(Y) 
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Prediction with Bayes Nets 
S 

P(F)  P(T) 
0.5  0.5 

        G 
S  P(F)  P(T) 
F    0.9    0.1 
T    0.8    0.2 R 

S  P(F)  P(T) 
F    0.8    0.2 
T    0.2    0.8 

       A 
G  R  P(F)  P(T) 
F  F   0.9    0.1 
F  T   0.8    0.2 
T  F   0.5    0.5 
T  T   0.2    0.8 

P(A=T|S=T) =  ΣΣ   P(G|S=T)P(R|S=T)P(A=T|G,R) 
                        G=F,T   R=F,T

   

= (0.8)(0.2)(0.1) + (0.8)(0.8)(0.2) + (0.2)(0.2)(0.5) + (0.2)(0.8)(0.8) =.29 
      F     F                     F     T                   T     F                   T     T  

Rough grading: 
being smart 
doesn’t help very 
much! 

GREs are better 
correlated with 
intelligence than 
the grades 

G 
Grade

s 

S 
Smart 

R 
GREs 

A 
Admit 
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Inference with Bayes Nets 

G 
Grade

s 

S 
Smart 

R 
GREs 

A 
Admit 

P(A=T) = Σ Σ Σ P(S)P(G|S)P(R|S)P(A=T|G,R) 
               S=F,T   G=F,T

  
R=F,T

  
 

= P(S=T)P(A=T|S=T) + P(S=F)P(A=T|S=F)  = 0.21 
P(S=T) = 0.5, P(S=F) = 0.5, P(A=T|S=F) calculated analogously to P(A=T|S=T) 

P(S=T) = 0.5 
P(A=T|S=T) calculated on previous slide =.29 
P(A=T|S=F) =.14 
 
 
  

P(S=T|A=T) = P(S=T,A=T)/P(A=T) 
   Or, using Bayes Rule:  
                      = P(S=T)P(A=T|S=T)/P(A=T) 
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Inference with Bayes Nets 

G 
Grade

s 

S 
Smart 

R 
GREs 

A 
Admit 

If a student is not admitted, is it more 
likely they had bad GREs or bad grades? 

Compute P(R=F|A=F)  and P(G=F|A=T) 

P(R=F|A=F) = P(R=F,A=F) / P(A=F) = [Σ Σ  P(S)P(G=F)P(R)P(A=F)]/P(A=F) 
              G=F,T

  
R=F,T  

  P(A=F)  = Σ Σ Σ P(S)P(G|S)P(R|S)P(A=T|G,R) (as before) 

Tedious but straightforward to compute 

P(G=F|A=T)  = .92  = 1.6 
P(R=F|A=F)      .56 
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End of worked example 
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Goal 

• Estimate interaction probability using  
– Affinity capture 
– Two-hybrid 
– Less physical data 

P1-P2 
REAL 

Detected 
by X1 

Detected 
by Xn 

… 

Cause  (often “hidden”) 

Effects (observed) 
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Properties of real interactions: correlated expression  
Expression Profile Reliability (EPR) 

Deane et al. Mol. & Cell. Proteomics (2002) 1.5, 349-356 

INT = high confidence 
interactions from  

small scale experiments 

d = “distance” that measures the difference 
between two mRNA expression profiles 

Note: proteins involved in “true” protein-
protein interactions have more similar mRNA 
expression profiles than random pairs.  Use 
this to assess how good an experimental set 

of interactions is. 

Source: Deane, Charlotte M., Łukasz Salwiński, et al. "Protein Interactions Two Methods for Aassessment of
the Reliability of High Throughput Observations." Molecular & Cellular Proteomics 1, no. 5 (2002): 349-56.
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Co-evolution 

Cokus et al. BMC Bioinformatics 2007 8(Suppl 4):S7   doi:10.1186/1471-2105-8-S4-S7 

More likely to interact 

Which pattern below is more likely to 
represent a pair of interacting proteins?  

104

Courtesy of Cokus et al. License: CC-BY.
Source: Cokus, Shawn, Sayaka Mizutani, et al. "An Improved Method for Identifying Functionally
Linked Proteins using Phylogenetic Profiles." BMC Bioinformatics 8, no. Suppl 4 (2007): S7.
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Rosetta Stone 

• Look for genes that are 
fused in some organisms 
– Almost 7,000 pairs found in 

E. coli. 
– >6% of known interactions 

can be found with this 
method 

– Not very common in 
eukaryotes 
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Integrating diverse data 

http://www.sciencemag.org/content/302/5644/449.abstract
 105
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Advantage of Bayesian Networks 

• Data can be a mix of types: numerical and 
categorical 

• Accommodates missing data 
• Give appropriate weights to different sources 
• Results can be interpreted easily 
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Requirement of Bayesian 
Classification 

• Gold standard training data 
– Independent from evidence 
– Large 
– No systematic bias 

Positive training data: MIPS 
• Hand-curated from literature 
Negative training data:  
• Proteins in different subcellular compartments 
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Integrating diverse data 
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© American Association for the Advancement of Science. All rights reserved. This content is excluded from our
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Source: Jansen, Ronald, Haiyuan Yu, et al. "A Bayesian Networks Approach for Predicting Protein-protein
Interactions from Genomic Data." Science 302, no. 5644 (2003): 449-53.
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likelihood ratio = if > 1 classify as true 
if < 1 classify as false 

log likelihood ratio =  

Prior probability is the same for all interactions 
--does not affect ranking 

Ranking function =  

( | _ )( | _ )log
( | _ ) ( | _ )

M
i

i i

P Observation true PPIP Data true PPI
P Data false PPI P Observation false PPI

 
= 

 
∏
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Protein pairs in the essentiality data can 
take on three discrete values (EE, both 
essential; NN, both non-essential; and NE, one 
essential and one not) 

1,114/2150 

81,924/573,734 

Likelihood=L= 
)|(
)|(

negfP
posfP
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Source: Jansen, Ronald, Haiyuan Yu, et al. "A Bayesian Networks Approach for Predicting Protein-protein Interactions from Genomic
Data." Science 302, no. 5644 (2003): 449-53.
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Fully connected → 
Compute probabilities for all 16 
possible combinations 

© American Association for the Advancement of Science. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Jansen, Ronald, Haiyuan Yu, et al. "A Bayesian Networks Approach for Predicting Protein-protein Interactions from Genomic Data."
Science 302, no. 5644 (2003): 449-53.
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Interpret with caution, as 
numbers are small 

© American Association for the Advancement of Science. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Jansen, Ronald, Haiyuan Yu, et al. "A Bayesian Networks Approach for Predicting Protein-protein Interactions from Genomic Data."
Science 302, no. 5644 (2003): 449-53.
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TF=FP 

prediction 
based on 
single data 
type all have 
TP/FP<1 

How many gold-standard events do we 
score correctly at different likelihood 
cutoffs? 

( | _ )log
( | _ )

P Data true PPI
P Data false PPI

 
 
 

© American Association for the Advancement of Science. All rights reserved.
This content is excluded from our Creative Commons license. For more
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Source: Jansen, Ronald, Haiyuan Yu, et al. "A Bayesian Networks Approach
for Predicting Protein-protein Interactions from Genomic Data." Science 302,
no. 5644 (2003): 449-53.
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Summary 

• Structural prediction of protein-protein 
interactions 

• High-throughput measurement of protein-
protein interactions 

• Estimating interaction probabilities 
• Bayes Net predictions of protein-protein 

interactions 
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