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Predictions

Last time: protein structure
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Source: Lindorff-Larsen, Kresten, Stefano Piana, et al. "How Fast-folding
Proteins Fold." Science 334, no. 6055 (2011): 517-20.
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Prediction Challenges

ict effect of point mutations
ict structure of complexes

ict all interacting proteins



Community-wide evaluation of methods for
predicting the effect of mutations on
protein-protein interactions

*DOI: 10.1002/prot.24356

“Simple” challenge:
Starting with known
structure of a complex:
predict how much a
mutation changes binding et

e e which were provided to participants. Residues probed in the deep
a I n Ity. sequencing enrichment experiment are in orange; the remainder are in

grey. Residues at the interface are represented as sticks.

© Wiley Periodicals, Inc. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Source: Moretti, Rocco, Sarel J. Fleishman, et al. "Community-wide Evaluation of Methods for
Predicting the Effect of Mutations on Protein—protein Interactions." Proteins: Structure, Function, and
Bioinformatics 81, no. 11 (2013): 1980-7.
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Area under curve for predictions (varying cutoff in ranking)

HB36, all mutations
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Commons license. For more information, see http://ocw.mit.edu/help/faqg-fair-use/.

*DOI: 10.1002/prot.24356

. First Round

. Second Round. (Given data
for nine random mutations at
each position)
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Predicting Structures of Complexes

e Can we use structural data to
predict complexes?

* This might be easier than
guantitative predictions for site
mutants.

e But it requires us to solve a

© source unknown. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see

d O C ki n g p ro b I e m http://ocw.mit.edu/help/faq-fair-use/.
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Docking

Which surface(s) of
protein A interactions
with which surface of
protein B?

Courtesy of Nurcan Tuncbag. Used with permission.

N. Tuncbag



Docking

molecu

*Eva

Courtesy of Nurcan Tuncbag. Used with permission.

Imagine we wanted to
predict which proteins
interact with our favorite

e.

For each potential partner:

uate all possible

relative positions and

orientations

This approach would be extremely allow for structural
slow! rearrangements

It’s also prone to false positives.
Why?

*measure energy
of interaction



Reducing the search space

* Efficiently choose potential partners before
structural comparisons

* Use prior knowledge of interfaces to focus
analysis on particular residues



Next

PRISM

Fast and accurate modeling of
protein-protein
interactions by combining
template-interface-based
docking with flexible
refinement.

Tuncbag N, Keskin O, Nussinov
R, Gursoy A.

http://www.ncbi.nlm.nih.gov/
pubmed/22275112

PrePPI

Structure-based prediction of
protein—protein
interactions on a genome-
wide scale

Zhang, et al.
http://www.nature.com/natur

e/journal/v490/n7421/full/
naturel1503.html
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PRISM’s Rationale

There are limited number of protein “architectures”.

Protein structures can interact via similar architectural
motifs even if the overall structures differ

Find particular surface regions of proteins that are

spatially similar to the complementary partners of a
known interface

N. Tuncbag



PRISM’s Rationale

* Two components:

— rigid-body structural comparisons of target
proteins to known template protein-protein
interfaces

— flexible refinement using a docking energy
function.

* Evaluate using structural similarity and
evolutionary conservation of putative binding

residue 'hot spots'.
N. Tuncbag
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Subtilisin and its inhibitors

Although global folds of Subtilisin’s partners are very different, binding regions
are structurally very conserved.

§ Chymotrypsin
_ Inhibitor 2

Subtilisin
Inhibitor

N. Tuncbag

Courtesy of Nurcan Tuncbag. Used with permission.
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Hotspots
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Fig. 1. Contribution of only a subset
of contact residues to net binding
energy. (A) Loss of solvent-acces-
sible area (7) of the side chain por-
tion of each residue in the hGHbp
on forming a complex with hGH. (B)
Difference in binding free energy
between alanine-substituted and
wild-type hGHbp (AAG), .. at
contact residues (5). Negative val-
ues indicate that affinity increased
when the side chain was substitut-
ed by alanine.

© American Association for the Advancement of Science. All rights reserved. This content is excluded
from our Creative Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Source: Clackson, Tim and James A. Wells. "A Hot Spot of Binding Energy in a Hormone-Receptor

Interface." Science 267, no. 5196 (1995): 383-6.

Figure from Clackson & Wells (1995).
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Hotspots
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© American Association for the Advancement of Science. All rights reserved. This content is excluded
from our Creative Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.
Source: Clackson, Tim and James A. Wells. "A Hot Spot of Binding Energy in a Hormone-Receptor
Interface." Science 267, no. 5196 (1995): 383-6.

Figure from Clackson & Wells (1995).
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 Fewer than 10% of the residues at an interface
contribute more than 2 kcal/mol to binding.

* Hot spots
— rich in Trp, Arg and Tyr

— occur on pockets on the two proteins that have
complementary shapes and distributions of
charged and hydrophobic residues.

— can include buried charge residues far from
solvent

— O-ring structure excludes solvent from interface

http://onlinelibrary.wiley.com/doi/10.1002/prot.21396/full
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N. Tuncbag

Courtesy of Nurcan Tuncbag. Used with permission.

1.

|dentify interface of
template (distance
cutoff)
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N. Tuncbag

Courtesy of Nurcan Tuncbag. Used with permission.

1.

|dentify interface of
template (distance
cutoff)
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NFkB

Courtesy of Nurcan Tuncbag. Used with permission.

N. Tuncbag

1.

|dentify interface of
template (distance
cutoff)
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N. Tuncbag

Courtesy of Nurcan Tuncbag. Used with permission.

|dentify interface of
template (distance
cutoff)

Align entire surface of
qguery to half-interfaces

Test
Overall structural match

2. Structural match of at

hotspots

3. Sequence match at

hotspots
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ASPP2 1. |dentify interface of

template (distance
cutoff)

NFkB '. . Align entire surface of
N query to half-interfaces

Test
Overall structural match

2. Structural match of at
hotspots

3. Sequence match at
hotspot

4. Flexible refinement

Courtesy of Nurcan Tuncbag. Used with permission.
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Flowchart

Template P [TEmpiate | [ TARGET_
Interface,

Right partner Structural Alignment of template
interface partners with target surfaces

a Template
Interface,
Left partner

Y\

Passing Match
Thresholds?

T,: target
similar to |,

Tp: target
similar to I

Passing Collision

No

Check?
Yes

s Flexible Refinement of the Predicted
T, X Ty: Predicted Complex Complexes and Ranking

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Tuncbag, Nurcan, Attila Gursoy, et al. "Predicting Protein-protein Interactions on a Proteome Scale by Matching Evolutionary and
Structural Similarities at Interfaces using PRISM." Nature Protocols 6, no. 9 (2011): 1341-54.

Structural match of template and target
does not depend on order of residues

22
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Predicted p27 Protein Partners

Courtesy of Nurcan Tuncbag. Used with permission.
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Next

PrePPI

Structure-based prediction of
protein—protein
interactions on a genome-
wide scale

Zhang, et al.

http://www.nature.com/natur
e/journal/v490/n7421/full/
naturel1503.html

24
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PDB structures/ Structural Template Interaction Structural-based
homology models neighbours complexes models score

from PDB
. ‘% ' ‘ (. B
Structural Model
superposition evaluation

Sequence’ Structural /i : i o
similarity similarity \NA, ) e _
a _ : Bayesian
' _ LN classification
' e e o
Non-structural evidence @ .

Co-expression Functional Evolutionary
similarity similarity

QB

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Zhang, Qiangfeng Cliff, Donald Petrey, et al. "Structure-based Prediction of Protein-protein
Interactions on a Genome-wide Scale." Nature 490, no. 7421 (2012): 556-60.

PrePPI

Scores potential templates without building a
homology model

Criteria
Geometric similarity between the protomer and template
Statistics based on preservation of contact residues

Structure-based prediction of protein—protein interactions on a genome-wide scale
Nature 490, 556-560 (25 October 2012) doi:10.1038/nature11503

PrePPI
Score

25
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PDB structures/ Structural Template Interaction Structural-based
homology models neighbours complexes models score

from PDB
|Sequence Strucfral Structural == | Model
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Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Zhang, Qiangfeng Cliff, Donald Petrey, et al. "Structure-based Prediction of Protein-protein

Interactions on a Genome-wide Scale." Nature 490, no. 7421 (2012): 556-60.

1. Find homologous proteins of known structure (MA,MB)

Structure-based prediction of protein—protein interactions on a genome-wide scale
Nature 490, 556-560 (25 October 2012) doi:10.1038/nature11503 2
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POB Structural Template Interaction Structural-based

horflology models neighbours complexes models score
from PDB

QA

Sequence’ Structural
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similarity similarity

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Zhang, Qiangfeng Cliff, Donald Petrey, et al. "Structure-based Prediction of Protein-protein

Interactions on a Genome-wide Scale." Nature 490, no. 7421 (2012): 556-60.

1. Find homologous proteins of known structure (MA,MB)
2. Find structural neighbors (NA,NB)(avg:1,500 neighbors/structure)

Structure-based prediction of protein—protein interactions on a genome-wide scale
Nature 490, 556-560 (25 October 2012) doi:10.1038/nature11503 27
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PDB structures/ Structural Template Interaction Structural-based
homology models neighbours complexes models score

8 AN &
Sequence’ Structural : Jructuml s
similarity , similarity ./ Jiperposiian sakehon,
a B Bayesian PrePPI
: Y ) classification / %)
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Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Zhang, Qiangfeng Cliff, Donald Petrey, et al. "Structure-based Prediction of Protein-protein
Interactions on a Genome-wide Scale." Nature 490, no. 7421 (2012): 556-60.

1. Find homologous proteins of known structure (MA,MB)
Find structural neighbors (NA,NB.)(avg:1,500 neighbors/structure)
3. Look for structure of a complex containing structural neighbors

N

Structure-based prediction of protein—protein interactions on a genome-wide scale
Nature 490, 556-560 (25 October 2012) doi:10.1038/nature11503 28
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PDB structures/ Structural Template Interaction Structural-based
homology models neighbours complexes models score
from PDB

Sequence’ Structural
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Lag
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@ Structural Model ey
similarity similarity NAN) B | superposition evaluation /NG
a 1? Bayesian
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Non-structural evidence
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Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Zhang, Qiangfeng Cliff, Donald Petrey, et al. "Structure-based Prediction of Protein-protein

Interactions on a Genome-wide Scale." Nature 490, no. 7421 (2012): 556-60.

Find homologous proteins of known structure (MA,MB)

Find structural neighbors (NA,NB.)(avg:1,500 neighbors/structure)
Look for structure of a complex containing structural neighbors
Align sequences of MA,MB to NA,NB based on structure

W e

Structure-based prediction of protein—protein interactions on a genome-wide scale
Nature 490, 556-560 (25 October 2012) doi:10.1038/nature11503 2
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PDB structures/ Structural Template Interaction Structural-based
homology models neighbours complexes models score
from PDB
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Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Zhang, Qiangfeng Cliff, Donald Petrey, et al. "Structure-based Prediction of Protein-protein

Interactions on a Genome-wide Scale." Nature 490, no. 7421 (2012): 556-60.

Find homologous proteins of known structure (MA,MB)

Find structural neighbors (NA,NB.)(avg:1,500 neighbors/structure)
Look for structure of a complex containing structural neighbors
Align sequences of MA,MB to NA,NB based on structure

W e

Structure-based prediction of protein—protein interactions on a genome-wide scale
Nature 490, 556-560 (25 October 2012) doi:10.1038/nature11503 30
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Template Complex
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Interacting residue pairs

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

1. Identify interacting residues in template complex
(Called NA1 NB3 in rest of paper)
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Template Complex

e @mm
TA TB
[a1 ta{' i tan tb] !b?"'tbm
ta./tb, |ta /tb_[ta /tb, [ta /tb, Jta /tb,|ta /tb, jta, /tb,

Interacting residue pairs

Interaction Model

MA
MA 88
ma; ke mas
maS_ mau mag

Predicted interfacial residues

ma

12

© source unknown. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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1. Identify interacting residues in template complex
(Called NA1 NB3 in rest of paper)
2. Predict interacting residues for the homology models
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Template Complex Interaction Model

NA MA

:LNA @J\IB
TD MA ° oo IO MB
ta1--- ta.; ta” ﬂ;l tb?"'tbm . = s

ma,, mb:-*mb, -+ mb

1 5 12 4 8
ta./tb, Jta /tb_ [ta /tb, [ta /tb, |ta /tb, |ta /tb, ﬁa”fth ma, |ma,|ma, mb, |mb, |mb, |mb,
Interacting residue pairs Predicted interfacial residues

Structure-based sequence alignment

SIM= PSD(TA,MA);PSD(TB.MB}

SiZ=
Evaluate based COV=(:5? ta /th, ta /tb,
on five measures = %+
TA OO
MA e

OL=5 |ma,[ma,|ma, mb, imb, |mb, [mb,

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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ex Interaction Model

Evaluate based on
five measures:
*SIM: structural MA
similarity of NA,MA
and NB,MB
Cym—=— N
MA 88 I.':-I.]MB
ma, - ma, -+ ma, mb;--mb,--- mb,
la._ftb; taﬁftbé ta,/tb, taga'tb4 taqftbj tamftbz ta“ftb1 ma,|ma,|ma, mb, [mb, Imb, Imb,
Interacting residue pairs Predicted interfacial residues
Structure-based sequence alignment

SIM= PSD(TA,MA);-PSD(TB.MB}

SIZ=4
COV=0.57 [ta/tb, [ta/tb,
0S=2

OL=5 |ma |ma,|ma, mb, |mb,{mb, [mb,

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. 34
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Evaluate based on five measures:

*SIM: structural similarity of NA,MA and NB,MB

*SIZ (number) COV (fraction) of interaction pairs can be aligned
anywhere

*OS subset of SIZ at interface

*OL number of aligned pairs at interface

Structure-based sequence alignment

p— PSD{TA,MA};PSD[TB.MB}

SIZ=4
COV=0.57 ffa/tb, [ta/th, |ta /tb, ta,/tb, ka, /tb,
0S§=2 ] l
TADOO X L eeel]:
MA % X Dmms ©DmxMB
OL=5 |ma,|ma,|ma, mb, |mb,|mb, [mb,

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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“The final two scores reflect whether the residues that
appear in the model interface have properties consistent
with those that mediate known PPIs (for example, residue
type, evolutionary conservation, or statistical propensity to
be in protein—protein interfaces).” 7?7?77

Structure-based sequence alignment

SIM= PSD{TA,MA};PSD[TE.MB]I

SIZ=4
COV=0.57 [fa,/tb, [ta/tb, |ta /tb, ta, /tb, fa, /tb,
0S=2 1
TA DX  eeel]l:
MA % X Dmms DO xIMB

OL=5 |ma,|ma,|ma, mb, |mb,|mb, [mb,

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.
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PDB structures/ Structural Template Interaction Structural-based
homology models neighbours complexes models score

from PDB
Sequence Structural § Structural Model
similarity NA, superposmon evaluation
a Bayesian PrePPI
' , LK N J classification score

similarity
QB . ® @ @
Non-structural evidence

Co-expression Functional Evolutionary
similarity similarity

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Zhang, Qiangfeng Cliff, Donald Petrey, et al. "Structure-based Prediction of Protein-protein
Interactions on a Genome-wide Scale." Nature 490, no. 7421 (2012): 556-60.

1. Find homologous proteins of known structure (MA,MB)
Find structural neighbors (NA, NB.)(avg:1,500

neighbors/structure)

Look for structure of a complex containing structural
neighbors

Align sequences of MA,MB to NA,NB based on structure

Compute five scores
Train Bayesian classifier using “gold standard” interactions

Structure-based prediction of protein—protein interactions on a genome-wide scale
Nature 490, 556-560 (25 October 2012) doi:10.1038/nature11503 37
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PDB structures/ Structural Template Interaction Structural-based
homology models neighbours complexes models score
from PDB

s

Sequence Structural
similarity

Structural Model
superposition evaluation

e

similarity
a . Bayesian PrePPI
' | o000 classification score

hd

QB _ ' e e o
Non-structural evidence

Co-expression Functional Evolutionary
similarity similarity

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Zhang, Qiangfeng Cliff, Donald Petrey, et al. "Structure-based Prediction of Protein-protein

Interactions on a Genome-wide Scale." Nature 490, no. 7421 (2012): 556-60.

Find homologous proteins of known structure (MA,MB)
Find structural neighbors (NA,NB )(avg:1,500
neighbors/structure)

Look for structure of a complex containing structural
neighbors

Align sequences of MA,MB to NA,NB based on structure
Compute five scores

Train|Bayesian classifier\using “gold standard” interactions
We will examine Bayesian classifiers soon %
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Outline

* High-throughput measurement of protein-
protein interactions

* Estimating interaction probabilities

* Bayes Net predictions of protein-protein
Interactions



Detecting protein-protein

What are the
likely false
positives?

What are the
likely false
negatives?

Proteomics: Protein complexes take the bait

Anuj Kumar and Michael Snyder
Nature 415, 123-124(10 January 2002)
doi:18.1038/415123a

Interactions

a

Bait

Isolate protein
— V’ complex

Affinity

«um  Gavin, A.-C. et al. Nature
415, 141-147 (2002).

c Ho, Y. et al. Nature 415,
180-183 (2002).

Excise bands
’ Digest with trypsin
d Protein 1

Courtesy of Macmillan Publishers Limited.

Used with permission.

Source: Kumar, Anuj, and Michael Snyder. "Proteomics:
Protein Complexes take the Bait." Nature 415, no. 6868
(2002): 123-4.
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Mass-spec for protein-protein
Interactions

* Extremely efficient method for detecting
Interactions

* Proteins are in their correct subcellular
location.

Limitations?



Mass-spec for protein-protein
Interactions

* Extremely efficient method for detecting
Interactions

* Proteins are in their correct subcellular
location.

Limitations?
* overexpression/tagging can influence results
* only long-lived complexes will be detected



Tagging strategies

Gavin et al. (2002) Nature.

PCR product -SpacerCBP)-TEV site

Gene Homologous
targeting recombination

Chromosome FHH  Gene Gene |—

protein NNH Spacer<GBR)-TEV site-Brotein >

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Gavin, Anne-Claude, Markus Bosche, et al. "Functional Organization of the Yeast Proteome by
Systematic Analysis of Protein Complexes." Nature 415, no. 6868 (2002): 141-7.

TAP-tag (Endogenous protein levels)
Tandem purification

1. Protein A-IgG purification

2. Cleave TEV site to elute

3. CBP-Calmodulin purification

4. EGTAto elute

Ho et al. (2002) Nature over-expressed proteins and used only one tag.
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Yeast two-hybrid

AD

No transcription

Transcription

g Site

Reporter gene

Courtesy of BioTechniques. Used with permission.

Source: Ratushny, Vladimi, and Erica A. Golemis. "Resolving the Network of Cell Signaling Pathways
using the Evolving Yeast Two-hybrid System." Biotechniques 44, no. 5 (2008): 655.

How does this compare to
Biotechniques. 2008 Apr;44(5):655-62. mass-spec based
Ratushny V, Golemis E. approaches 44
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No transcription

> »

Transcription

Cognate Binding Site

Courtesy of BioTechniques. Used with permission.

Source: Ratushny, Vladimi, and Erica A. Golemis. "Resolving the Network of Cell

Signaling Pathways using the Evolving Yeast Two-hybrid System." Biotechniques
44, no. 5 (2008): 655.

Biotechniques. 2008 Apr;44(5):655-62.
RatushnyV, Golemis E.

*Does not require
purification — will pick up
more transient
Interactions.

Biased against proteins
that do not express well,
or are incompatible with
the nucleus
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Outline

* Estimating interaction probabilities

* Bayes Net predictions of protein-protein
Interactions



Error Rates

* How can we estimate the error rates?

True

False u
negatives positives
and
false
positives

True
positives



Error Rates

True
positives
from
gold standard




Data Integration
| =True
positives
from

Gold standard
gold standard

lI=Consensus |
tr.u.e iment Experiment
positives ) 1 1

Fraction of consensus present in gold standard=I1/ll



Data Integration

| =True Mix of
positives true and false
ositives
Idfrfmd 9 Gold standard P
gold standar

lI=Consensus |

true . :
- \ xperiment
positives 1

1

Fraction of consensus present in gold standard=I1/ll



| =True
positives
from
gold standard

Data Integration
Define:

IV =

true positives
V =
false

Gold standard

lI=Consensus
true
positives

positives

\Y | D

.\U‘HK | Experiment

Fraction of consensus present in gold standard=I1/ll



Data Integration

| =True Assume
positives 1/1=111/I1V
Idfrfmd 9 Gold standard
gold standar

lI=Consensus

tr.u.e \truK Experiment
positives 1

....
....
L 4

Fraction of consensus present in gold standard=I1/ll



Estimated Error Rates

Assume that all of regions | and
|| are true positives.

MIPS (7,020)

If MIPS has no bias toward
either Krogan or Gavin,

then the fraction of TP in MIPS
will be the same in the common
data (I/ll) and the unique data
(H1/1V)

True positives

IV =786

~

’V=11,25§/

False positives \) ~_
\V = 14,676

Gavin et al. [27] Krogan et al. [28]
18,137 14,317

Courtesy of BioMed Central Ltd. Used with permission.

Source: Hart, G. Traver, Arun K. Ramani, et al. "How Complete are Current Yeast and Human Protein-
interaction Networks." Genome Biology 7, no. 11 (2006): 120.

How complete are current yeast and human protein-interaction networks?
G Traver Hart, Arun K Ramani and Edward M Marcotte
Genome Biology 2006, 7:120d0i:10.1186/gb-2006-7-11-120
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Table 1

Yeast protein-interaction assay false-po

sitive rates: yeast datasets

Dataset Mumber of Defived false-positive  Publisked false-positive rate  Average false-positive
interactions rate® (%) (%) rate (%)
i
Uetz et 3/, [35] 854 46§32] [34:_22524 47 [44], 50 [37], 51 45
2
Ito [36] 4,393 89[032] 71[24fF, 78 [41], 85 [37], 91 a3
[44]
. 14 [24])F, 22 [4], <72 (upper
Gavinet al. [16] 2,120 62822] baund |200) 35
i
Hoetal. [17] 3,618 gafaz], 81, 82, 80 [5250[]::?4 » <97 (upperbound o
Jansenetal g nop a1)79 - a0
[22] ’
Gavinetal. [27] 18,137 73)82, 86* - g8z
Krogan et al. 75479, 66% (39, 65,

[28] 14,317 (7,123 core)

Cverall 51,419

37

core)

73 (54 core)

7z

*This interaction assay false-pasitive rate is ta
Multiple values derive from choosing either the GRID [2] or MIPS [33] reference sets. *This interaction assay false-positive rate
is calculated with the EPR server of Deane et &/, [42]. TThe mean of four values estimated from Table 53 of Lee ef af. [24] by
fitting the interaction set as a linear combination of true-pasitive {srmall scale interactions) and false-pasitive (random pairs)

interactions.

Hart et &/, Genome Biology 2006 7:120 doi:l0.1186/gb-2006-7-11-120

s frorn D'haeselesr and Chulch [32] or derived using the method therein,

Dataset

Table 3

Human protein-interaction assay false-positive rates: human datasets

false-positive  Published false-positive  Average false-positive

rates (%)

[40]

Owerall

Lehner and Fraser

Rhodes et 2/, [23] 38,379
Stelzl et af. [15]
Rual et af. [14]

[43]

g-66 [14]t, 5

MNumber of unigue Derived
interactions rates* (%) rates (%)
58,700 (9,396 core) 96, 94, E (36, 81, 69
core)
a7, 86, g3 -
3,150 (902 core) 28, 98 (B4,95 core) 70
2,611 27,93
100,242

94 (79 core)

85
98 (26 core)
K [45] 58
ao

*This interaction assay false-positive rate is derived using
20,296 unique interactions from HPRD [S4], BIND [55], Re
choices of comparison sets, T4 range of six values (mean
set CCSB-HI1 as a linear combination of true positive {LCI

8%) estimated from
| 14

Table 1 of
1]

he method of D'haeseleer and Jhurch [32] and a reference set of
ctome [S6], and Ramani et &/, [

3], Multiple walues derive fram different
ual et &, [14] by fitting the interaction

e

Hart et 3/, Genome Siclogy 2006 71120 doii10.1186/gb-2006-7-11-120

e

ibled interactions.

Courtesy of BioMed Central Ltd. Used with permission.
Source: Hart, G. Traver, Arun K. Ramani, et al. "How Complete are Current Yeast and Human Protein interaction Networks."

Genome Biology 7, no. 11 (2006): 120.
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Finding real interactions

Take only those that are reported by >1
method?

Filter out “sticky” proteins?

Estimate probability of each interaction based
on data.

Use external data to predict



100

Purified
complexes

e (TAP)

3 Purified

-y complexes .

3 (HMS-PCI)

2 404 In silico
— 9 MRNA- predictions
> 3 correlated 4 : @ Two methods
o5 expression v
) # . .
T @ Synthetic _
o 2 lethality Combined
20 evidence
Q5 A
09 A /

= 14 High-throughput y

o yeast two-hybrid . @® Three

=

2 methods

2 A Rawdata

i = Filtered data

+— Parameter choices
0.1 | 1 1
0.1 1 10 100

Accuracy (%)
Fraction of data confirmed by reference set

Note: log-log plot!

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Von Mering, Christian, Roland Krause, et al. "Comparative Assessment of Large-scale Data
Sets of Protein—protein Interactions." Nature 417, no. 6887 (2002): 399-403.

Comparative assessment of large-scale data sets of protein—protein interactions

von Mering, et al. Nature 417, 399-403 (23 May 2002) | doi:10.1038/nature750
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Finding real interactions

* Estimate probability of each interaction based
on data.

— How can we compute P(real _PPI |Data)?

Data = (two _hybrid, mass _spec,co __evolution,co _expression,...)

or
Data = (mass_spec_expt_1,mass _spec_expt 2,...)
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Bayes Rule

posterior likelihood prior

~_ \ e
P(Dataltrue PPI)P(true PPI)

P(true PPI|Data) = D)




Naive Bayes Classification

posterior likelihood prior

~_ \ e
P(Dataltrue PPI)P(true PPI)

P(true PPIl|Data) = P(D)

likelihood ratio = ratio of posterior probabilities
P(true_PPl|Data)  P(Dataltrue_PPI)P(true_PPI)
P(false PPI|Data) P(Datalfalse PPI)P(false PPI)

If > 1 classify as true
If < 1 classify as false

How do we compute this ?




if > 1 classify as true
if < 1 classify as false

likelihood ratio =

P(true_PPl|Data)  P(Dataltrue_PPI)P(true_PPI)
P(false_PPI|Data) P(Datalfalse PPT)P(false PPI)

log likelihood ratio =

P(true PPI|Data) | [ P(true PPI) " [ P(Daz‘a|true_PPI)‘
O =10 Q)
°| P(false_PPI|Dara)| | °| P(false PPD)||" °| P(Datafalse_PPI)

Prior probability is the same for all interactions
--does not affect ranking
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if > 1 classify as true
if < 1 classify as false

likelihood ratio =

P(true_PPl|Data)  P(Dataltrue_PPI)P(true_PPI)
P(false_PPI|Data) P(Datalfalse PPT)P(false PPI)

log likelihood ratio =

[ P(Dataltrue_PPI)
+|log
P(Data|false_PPIj

o P(true_PPl|Data) | o P(true_PPI)
®| P(false PPl|Data)| | °| P(false PPI)

Prior probability is the same for all interactions
--does not affect ranking

P(Data |true _PPI) }

anking runction Q{P(Datal faISe_PPI)
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Ranking function =

5 P(Data |true _PPI)
P(Data| false _PPI)

We assume the observations are independent
(we’ll see how to handle dependence soon)
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Ranking function =

:

P(Data|true _PPI) _lM[ P(Observation, |true _ PPI)
P(Data | false PPI) . P(Observation. | false _ PPI)

We assume the observations are independent
(we’ll see how to handle dependence soon)
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Ranking function =

g P(Data|true _PPI) _lM[ P(Observation, |true _PPI)
P(Data | false PPI) . P(Observation. | false _ PPI)

We assume the observations are independent
(we’ll see how to handle dependence soon)

We can compute these terms if we have a set of high-
confidence positive and negative interactions.

Exactly how we compute the terms depends on the
type of data. |

For affinity purification/mass spec. see
Collins et al. Mol. Cell. Proteomics 2007
http://www.mcponline.org/content/6/3/439.long
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100

Purified
complexes

o (TAP)

3 Purified

= complexes .

e (HMS-PCI) -

S 10 - In silico
a % le}dﬂt\‘;d 3 \ predictions
P correla
E’% expression . @ Two me;thods
3 @ Synthetic h
o 2 lethality Combined
39 N evidence

] .
o D A

s 14 High-throughpqt r":

g yeast two-hybrid . ® Three

e methods

S 4 Raw data

L = Filtered data

+—+ Parameter choices
01 T 1 1
0.1 1 10 100

Accuracy (%)
Fraction of data confirmed by reference set

Courtesy of Macmillan Publishers Limited. Used with permission.

Instead of requiring
an interaction to be
detected in all assays,
we can rank by

P(true_PPI|Data)

Source: Von Mering, Christian, Roland Krause, et al. "Comparative Assessment of Large-scale

Data Sets of Protein—protein Interactions." Nature 417, no. 6887 (2002): 399-403.

Comparative assessment of large-scale data sets of protein—protein interactions
von Mering, et al. Nature 417, 399-403 (23 May 2002) | doi:10.1038/nature750
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Compute using high-confidence

positives (from complexes)

TP/(TP+FN)

ROC curve

PE Scores (Consolidated)

0.4-

PE Scores (Krogan data)

o
‘:"

PE Scores (Gavin data)

C
e 1
%‘ 0.2
i}
5
" 0.5
43 el i True positives = ?
" ® Gavin PPI
: Gavin (2002) 0+ . . .
_‘MIF‘S smzllhlﬂ—r;cale J 0 0.5 1 True negatives = ?
04 . : ;
0 0.001 0.002

1 - Specificity (FPR)
© American Society for Biochemistry and Molecular Biology. All rights reserved. This content is excluded
from our Creative Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Source: Collins, Sean R., Patrick Kemmeren, et al. "Toward a Comprehensive Atlas of the Physical
Interactome of Saccharomyces Cerevisiae." Molecular & Cellular Proteomics 6, no. 3 (2007): 439-50.

Compute using high-

confidence negatives : ,
Collins et al. Mol. Cell. Proteomics 2007
FP/(TN+FP) 66
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ROC curve

A
PE Scores (Consolidated)
s B True positives = interactions
N . cores (Krogan data) . .
S ¢ Cemimr=s between proteins that occur in a
cC = .
sg o eanss,  COMplex annotated in a human-
92zt 1 curated database (MIPS or SGD).
oo F 202
cE Q2
= £ - &
n \\/U} 0.54 . _ . .
; § I o B True negatives = proteins pairs
o= '
(7)) ® Gavin PPI that
g- 8_ n Gavin (2002) 0 . ]
S MIPS small-scale v B " 1. are annotated to belong to
0' ' 4 ’ . [
’ 1 -Spe%;?;:tyu:m) % distinct Complexes
B 2. have different sub-cellular

© American Society for Biochemistry and Molecular Biology. All rights

reserved. This content is excluded from our Creative Commons license. H H

For more information, see http://ocw.mit.edu/help/fag-fair-use/. Iocatlons O R a ntlcorrelatEd m RNA
Source: Collins, Sean R., Patrick Kemmeren, et al. "Toward a Comprehensive

Atlas of the Physical Interactome of Saccharomyces Cerevisiae." Molecular & exp ression
Cellular Proteomics 6, no. 3 (2007): 439-50.

Co gute using high-
confidence negatives

FP/(TN+FP)
68 ROC curve Collins et al. Mol. Cell. Proteomics 2007 _
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Compute using high-confidence

positives (from complexes)

A Error rate
. . PE Scores (Consolidated) H
9074 interactions s _ equivalent to
e literature curated
PE Scores (Krogan data)
Py 0.3
zZ PE Scores (Gavin data)
- ;
= .
C- z., Literature curated
=T (excluding 2-hybrid)
= & 0.5-
@® Krogan PPI
0.1
@® Gavin PPI
. ; Fd '(JI 0 T '
j IPS small-scale 0 0.5 1
% ' 0.001 0.002
1 - Specificity (FPR)
" © American Society for Biochemistry and Molecular Biology. All rights

ROC curve

reserved. This content is excluded from our Creative Commons license.

For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Source: Collins, Sean R., Patrick Kemmeren, et al. "Toward a Comprehensive
Atlas of the Physical Interactome of Saccharomyces Cerevisiae." Molecular &
Cellular Proteomics 6, no. 3 (2007): 439-50.

Compute using high-
confidence negatives

FP/(TN+FP)

ROC curve Collins et al. Mol. Cell. Proteomics 2007
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Compute using high-confidence

positives (from complexes)

ROC curve

) p PE Scores (Consolidated)
9074 interactions -

0.4

PE Scores (Krogan data)

o
o

PE Scores (Gavin data)

o
(V]

Sensitivity (TPR)

TP/(TP+FN)

0.54

o K:mgan PPI
0.1 :

® Gavin PP|
B Gavin j2002) 0
MIPS small-scale 0

0.5 1

0 ) 0.001 0.002
1 - Specificity (FPR)

r © American Society for Biochemistry and Molecular Biology. All rights
reserved. This content is excluded from our Creative Commons license.
For more information, see http://ocw.mit.edu/help/fag-fair-use/.
Source: Collins, Sean R., Patrick Kemmeren, et al. "Toward a Comprehensive
Atlas of the Physical Interactome of Saccharomyces Cerevisiae." Molecular &
Cellular Proteomics 6, no. 3 (2007): 439-50.

Compute using high-
confidence negatives

FP/(TN+FP)

ROC curve
Collins et al. Mol. Cell

. Proteomics 2007
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Outline

* Bayes Net predictions of protein-protein
Interactions



Bayesian Networks

A method for using probabilities to
reason



In Biology

* Gene regulation
* Signaling
* Prediction



Bayesian Networks

* Bayesian Networks are a tool for reasoning
with probabilities

e Consist of a graph (network) and a set of
probabilities

e These can be “learned” from the data



In vivo
pull-down

Bayesian Networks

Predict unknown variables from
observations

connected

PIE

Ilto |

© American Association for the Advancement of Science. All rights reserved.
This content is excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/fag-fair-use/.

Source: Jansen, Ronald, Haiyuan Yu, et al. "A Bayesian Networks Approach
for Predicting Protein-protein Interactions from Genomic Data." Science 302,
no. 5644 (2003): 449-53.

III

A “natural” way to think about
biological networks.
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Bayesian Networks

-
_S % Gavin
>3 You could try to write out all the
al Ho conmected joint probabilities:
T |Uetz P(PPI |Y2HUetz' YZHIto' II:)Gavin' II:)Ho)
g PIE

Ito |

© American Association for the Advancement of Science. All rights reserved.
This content is excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/fag-fair-use/.

Source: Jansen, Ronald, Haiyuan Yu, et al. "A Bayesian Networks Approach
for Predicting Protein-protein Interactions from Genomic Data." Science 302,
no. 5644 (2003): 449-53.
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. £\ = s You could try to write out all the
N LT joint probabilities: ]
TN WK e P(PPI|Rosetta,CC,GO,MIPS,ESS) s
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=Y =¥ But some problems are too big!
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Courtesy of Macmillan Publishers Limited. Used with permission.

Source: Yang, Xia, Joshua L. Deignan, et al. "Validation of Candidate Causal Genes for Obesity that Affect Shared Metabolic Pathways and Networks."

Nature genetics 41, no. 4 (2009): 415-23.
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Bayesian Networks

 Complete joint probability tables are large and
often unknown

* N binary variables = 2N states

— only one constraint (sum of all probabilities =1)

=> 2N - 1 parameters



Graphical Structure Expresses our
Beliefs

Cause (often “hidden”)

S50 . @) Effects (observed)



Graphical Structure Expresses our

Detected
by X1

Detected
by Xn

Beliefs

by X1

Membrare

Detected Detected

by Xj

Detected
by Xj+1

Highly
expressed

Detected

by Xn
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Graphical Structure Expresses our
Beliefs

Highly

Membrare
expressed

Detected Detected
by X1 Tt by Xn

Detected Detected Detected Detected
by X1 AREA by Xj by Xj+1 R by Xn

Naive Bayes assumes all But some observations
observations are may be coupled.
independent

P(X;..X,PPD) = [ [ [P(XiPPD]  P(Xi...X,[PPD) = | [ [P(XilPPD)]
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Graphical Structure Expresses our

Detected
by X1

Detected
by Xn

Beliefs

Detected
by X1 -

Detected
by Xj

Detected
by Xj+1 R

Highly
expressed

Detected
by Xn

* The graphical structure can be decided in advance
based on knowledge of the system or learned from

the data.




(o)

Graphical Structure

()

|

(o

In a Bayesian Network, we
don’t need the full probability
distribution.

A node is independent of its
ancestors given its parents.

For example:

The activity of a gene
does not depend on the
activity of TF A1 once | know
TF B2.
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Automated Admissions Decisions

Grade
inflation

Grades

)

Prediction: we observe the “causes’
(roots/ parents) and want to predict
the “effects” (leaves/children).

Given Grades, GREs will we admit?

Inference: we observe the
“effects” (leaves/ children) and
want to infer the hidden values of
the “causes” (roots/parents)

You meet an admitted the
student. Is s/he smart?
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Automated Admissions Decisions

Grade
inflation

Grades

Making predictions/inferences
requires knowing the joint
probabilities:

P(admit, grade inflation, smart,
grades, GREs)

We will find conditional probabilities
to be very useful
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Automated Admissions Decisions

Joint Probability

G
(above
threshold)

F F 0.665
F T 0.035
T F 0.06
Grades T T 0.24

Conditional Probability

s ey

F 0.95 0.05
T 0.2 0.8

Formulations are equivalent and both require same number of constraints.
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Automated Admissions Decisions

e In a Bayesian Network, we don’t
nHaeon need the full probability
distribution.

The joint probability depends only
on “parents.”

Grades

For example:

GRE scores do not depend
on the level of grade inflation at
the school, but the grades do.

P(X1...X,) =11, [P(Xi|Parents(X;))]
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@ “Explaining Away”

Grase Does the probability that it’s raining
wet depend on whether the sprinkler is on?

In a causal sense, clearly not.

Slippery . .
But in a probabilistic model,

the knowledge that it is
raining influences our beliefs.
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“Explaining Away”

P(C=H)=p(C=T) =. 5

1
1
0
0

Does the prob. that C,=H on depend on whether C, =T?

If we know the score, then our belief in the state of
Clis influenced by our belief in the state C2.

p(C3=H,‘S= 1_,'Cl=T)_

'Cjﬂ=HS=1,Cj =T= .
pea=H=1c=1 p(S=1.C,=T)

0
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How do we obtain a BN?

* Two problems:

— learning graph structure
* NP-complete
e approximation algorithms

— probability distributions



Learning Models from Data

 Assume we know the structure, how do we
find the parameters?

* Define an objective function and search for
parameters that optimize this function.



Learning Models from Data

 Two common objective functions

— Maximum likelihood:
e Define the likelihood over training data {X.}:

L(6) = P(Data|f) = Z P(Xi]0)

Orir = '110111:91\ 1(6)= '110111:91\ P(Data|6)

— Maximum posterior:
P(Data|@)P(6)
P(D)

Orrap = arg 111;1}; P(O@|Data) = arg mgx

* Good search algorithms exist:
— Gradient descent, EM, Gibbs Sampling, ...
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Learning Models from Data

p(C=H)=7
p(C=T) =7

Onyr = arg max L(f)=arg max P(Data|6)

P(Data|@)P(6)
P(D)

Orrap = arg mgx P(8|Data) = arg mgx

D={(C1,C2,S)} ={(H,T,0), (H,H,1) ...}
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Learning Models from Data

e Searching for the BN structure: NP-complete

— Too many possible structures to evaluate all of
them, even for very small networks.

— Many algorithms have been proposed

— Incorporated some prior knowledge can reduce
the search space.
 Which measurements are likely independent?
* Which nodes should regulate transcription?
* Which should cause changes in phosphorylation?
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Resources to learn more

JAUA

® Documentation. download. bibliography
* An applet that runs the system m vour browser

& A paper describing the algorithm used bv JavaBayves (compressed version)
ggg ® An embeddable version of the inference engine in JavaBayes

JavaBayes

Bayesian Networks in Java

© Fabio Gagliardi Cozman, 1998 - 2001
focozman(@usp.br, http://www.cs.cmu.edu/~focozman/home.html
Escola Politécnica, University of S50 Paulo

© Fabio Gagliardi Cozman. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Kevin Murphy’s tutorial: http://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html
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A worked “toy” example

Best to work through on your own



Chain Rule of Probability for

@ Bayes Nets

Recall:

@ e P(X,Y) = P(X]Y)P(Y)

P(S,G,R,D) = P(S)P(G|S)P(R|G,S)P(A|S,G,R)

= P(S)P(G|S)P(R|S)P(A|G,R) (why?)

(because of conditional independence assumption)



Predlctlon with Bayes Nets

G
S P(F) P(T) S
— °F 09 0.1 ¥
T 0.8 0. 2 O 5 O 5 R
S P(F) P(T)
e F 0.8 0.2
T 0.2 0.8 GREs are better
| correlated with
Rough grading: intelligence than
| being smart G R P(F) B(D the grades
~ doesn’t help very FF 09 01
much! FT 0.8 0.2
TF 0.5 05
TT 0.2 0.8

P(A=T|S=T)= 22 P(G|S=T)P(R|S=T)P(A=T|G,R)

G=FT R=FT

= (0.8)(0.2)(0.1) + (0.8)(0.8)(0.2) + (0.2)(0.2)(0.5) + (0.2)(0.8)(0.8) =.29
FoOF FoT T F T T



Inference with Bayes Nets

P(S=T|A=T) = P(S=T,A=T)/P(A=T)
Or, using Bayes Rule:
E E = P(S=T)P(A=T|S=T)/P(A=T)

P(S=T)=0.5
P(A=T|S=T) calculated on previous slide =.29
P(A=T|S=F) =.14

P(A=T) =2 X 2. P(S)P(G|S)P(R|S)P(A=T|G,R)

S=FT G=FT R=FT

- P(S=T)P(A=T|S=T) + P(S=F)P(A=T|S=F) = 0.21

P(S=T) = 0.5, P(S=F) = 0.5, P(A=T|S=F) calculated analogously to P(A=T|S=T)



Inference with Bayes Nets

If a student is not admitted, is it more
likely they had bad GREs or bad grades?
@ @ Compute P(R=F|A=F) and P(G=F|A=T)
@ Tedious but straightforward to compute

A
[ \

P(R=F|A=F) = P(R=F,A=F) / P(A=F) = [GZFTZ‘E FP(S)P(G F)P(R)P(A=F)]/P(A=F)

P(A=F) =2 2. 2 P(S)P(G|S)P(R|S)P(A=T|G,R) (as before)

P(G=F|A=T) =.92 =1.6

P(R=F|A=F) .56
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End of worked example



Goal

* Estimate interaction probability using
— Affinity capture
— Two-hybrid
— Less physical data

Cause (often “hidden”)

S99 - (%) Effects (observed)



Properties of real interactions: correlated expression
Expression Profile Reliability (EPR)

025
A INT = high confidence
Interacting (INT) interactions from
0.20 - —0— small scale experiments

—w»—data (GY2H)
Experimental

0.15 1 —— it

p(d?)

0.10 4

0.05 49

=

0.00
0 5 EO 25 30
d

Dlstance

© American Society for Biochemistry and Molecular Biology. AII rights reserved. This content is excluded
from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Deane, Charlotte M., tukasz Salwinski, et al. "Protein Interactions Two Methods for Aassessment of
the Reliability of High Throughput Observations." Molecular & Cellular Proteomics 1, no. 5 (2002): 349-56.

d = “distance” that measures the difference

Note: proteins involved in “true” protein- _ _
between two mRNA expression profiles

protein interactions have more similar mRNA
expression profiles than random pairs. Use

this to assess how good an experimental set Deane et al. Mol. & Cell. Proteomics (2002) 1.5, 349-356
of interactions is. 102
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Co-evolution

Which pattern below is more likely to
represent a pair of interacting proteins?

P U

genome 1 genomeZ genomed genome4 genomes genome6  genome ¥ genome 8

. . r0 1 0 1 i 0 i i
More likely to interact =)tz o : g ! ] ] : .
gene 3 i 1 1 1 0 1 0 0
gene 4 1 1 1 1 0 0 0 0

Courtesy of Cokus et al. License: CC-BY.
Source: Cokus, Shawn, Sayaka Mizutani, et al. "An Improved Method for Identifying Functionally
Linked Proteins using Phylogenetic Profiles." BMC Bioinformatics 8, no. Suppl 4 (2007): S7.

CokKtis et al. BMC Bioinformatics 2007 8(Suppl 4):S7 do0i:10.1186/1471-2105-8-S4-S7 1


http://dx.doi.org/10.1186/1471-2105-8-S4-S7
http://dx.doi.org/10.1186/1471-2105-8-S4-S7

Rosetta Stone

ook for genes that are
used in some organisms

— Almost 7,000 pairs found in £ e
E. coli. : e

— >6% of known interactions
can be found with this
method

— Not very common in
eukaryotes




Integrating diverse data

A Bayesian Networks Approach
for Predicting Protein-Protein
Interactions from Genomic Data

Ronald Jansen,’® Haiyuan Yu,” Dov Greenbaum,’ Yuval Kluger,’
Nevan J. Krogan,* Sambath Chung,’? Andrew Emili,*
Michael Snyder,? Jack F. Greenblatt,* Mark Gerstein3%

SCIENCE VOL 302 17 OCTOBER 2003

http://www.sciencemag.org/content/302/5644/449.abstract
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Advantage of Bayesian Networks

Data can be a mix of types: numerical and
categorical

Accommodates missing data
Give appropriate weights to different sources
Results can be interpreted easily



Requirement of Bayesian
Classification
* Gold standard training data

— Independent from evidence

— Large

— No systematic bias
Positive training data: MIPS
 Hand-curated from literature
Negative training data:

* Proteins in different subcellular compartments



Integrating diverse data

Experimental
interaction
data

Used for ...

31,304}Integration of

25,333)experimental

Dataset # protein pairs
In-vivo pull-|Gavin et al.

down Ho et al.

Yeast two- |Uetz et al.

hybrid lto et al.

MRNA

981linteraction

Rosetta compendium

4.393|data (PIE)
19,334,806

Other Expression [Cell cycle 17.467,005|De novo
genomic Biological [GO biological process 3,146,286|prediction
features function  [MIPS function 6,161,805|(PIP)
Essentiality 8,130,528
- Proteins in the same
Gold Positives MIPS complex 8’250‘Training &
standards . Proteins separated by ‘testing
Negatives localization 2,708,746

© American Association for the Advancement of Science. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Source: Jansen, Ronald, Haiyuan Yu, et al. "A Bayesian Networks Approach for Predicting Protein-protein
Interactions from Genomic Data." science 302, no. 5644 (2003): 449-53.
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O Probabilistic interactome (PI)

Gavin

> Integration process

In vivo
pull-down

f—%

Data source

connected

C
® T
N @]

Y2H

Ito.

Rosetta |r PIT

|
Cell cycle|
GO process _._

MIPS function
Essentiality [

mRN
CO-expr.

© American Association for the Advancement of Science. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Source: Jansen, Ronald, Haiyuan Yu, et al. "A Bayesian Networks Approach for Predicting Protein-protein
Interactions from Genomic Data." Science 302, no. 5644 (2003): 449-53.
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if > 1 classify as true
if < 1 classify as false

likelihood ratio =

P(true_PPl|Data)  P(Dataltrue_PPI)P(true_PPI)
P(false_PPI|Data) P(Datalfalse PPT)P(false PPI)

log likelihood ratio =

[ P(true PPI|Data) | [ P(true PPI) " [ P(Daz‘a|true_PPI)‘
O =10 Q)
°| P(false_PPI|Dara)| | °| P(false PPD)||" °| P(Datafalse_PPI)

Prior probability is the same for all interactions
--does not affect ranking

Ranking function =

5 P(Data|true _PPI) IM[ P(Observation, |true _ PPI)
P(Data| false _PPI)

B . P(Observation. | false _ PPI)

110



Protein pairs in the essentiality data can
take on three discrete values (EE, both

essential; NN, both non-essential; and NE, one
essential and one not)

. P(f | pos)
Likelihood=L=
P(f |neg)
—> 81,924/573,734 —
v
Gold-standard overlap

Essentiality # protein pairs pos neg cum )| sumineg ) s;.:r:-.‘f?fe; }}f P(Ess|pos) | P(Ess||neg) J

& |EE 384,126 1,114 81,924 =14 (o g e -Btd=—>>5.18E-01 1.43E-01 36
T:II: NE 2767812 24 285487 1,738 367,411 0.005 2.90E-01 4,98E-01 0.6
= |NN 4,978,590 412 206,313 2,150 573,724 0.004 1.92E-01 3.60E-01 0.5
Sum 8,130,528 2,150 573,724 - - - 1.00E+00 1. 00E+00 1.0

—> 1,114/2150




Gold-standard overlap

Essentiality # protein pairs pos nog sumi{pos )| sum{neg ) F;T;Tnm }}! P(Ess|pos) | P(Esslneg) | L
% |EE 384,126 1,114 81,924 1,114 81,924 0.014 5.18E-01 1.43E-01| 36
T?: NE 2,767.812 624 285,487 1,738 367.411 0.005 2.90E-01 4.98E-01 0.6
= |NN 4,978,590 412 206,313 2,150 573.724 0.004 1.92E-01 3.60E-01 0.5
Sum 8,130,528 2,150 573,724 - - - 1.00E+00 1.00E+00 1.0
Gold standard overlap
Expression correlation i# protein pairs pos neg sum{pos )| sum{neg ) F;T‘r:]"[{;:;sg }}I P(exp|pos) | P({exp|neg) L
0.9 678 16 45 16 45 0.36 2.10E-03 1.68E-05|[124.9
0.8 4,827 137 563 153 608 0.25 1.80E-02 210E-04 || 85.5
0.7 17.626 530 2117 683 2,725 0.25 6.96E-02 7.91E-04 | 88.0
0.6 42,815 1,073 5,507 1,756 8,322 0.21 1.41E-01 2.09e-03|| 67.4
0.5 96,650 1,089 14,459 2,845 22,781 0.12 1.43E-01 5.40E-03| | 26.5
0.4 225,712 993 35,350 3,838 58131 0.07 1.30E-01 1.32E-02 9.9
0.3 520,268 1,028 83,483 4,866 141,614 0.03 1.35E-01 3.12E-02 4.3
0.2 1,200,331 870 183,356 5,736 324,970 0.02 1.14E-01 6.85E-02 1.7
w101 2,575,103 739 368,469 6475 693,439 0.01 9.71E-02 1.3BE-01 0.7
% 0 9,363,627 894 1,244,477 7,369 | 1,937.916 0.00 1.17E-01 4.65E-01 0.3
= |01 2,753,735 164 408,562 7533 | 2346478 0.00 2.15E-02 1.53E-01 0.1
0.2 1,241,907 B3 203,663 7,596 | 2,550,141 0.00 8.27E-D3 7.61E-02 0.1
0.3 484,524 13 84,957 7609 | 2635098 0.00 1.71E-03 3.18E-02 0.1
0.4 160,234 3 28,870 7612 | 2,663,968 0.00 3.94E-04 1.08E-02 0.0
0.5 48,852 2 8,001 7614 | 2672059 0.00 263E-04 3.02E-03 0.1
0.6 17423 - 2,134 7614 | 2674193 0.00 0.00E+00 7.98E-04 0.0
0.7 7,602 - 807 7614 | 2,675,000 0.00 0.00E+00 3.02E-04 0.0
0.8 2,147 - 261 7614 | 2675261 0.00 0.00E+00 9.76E-05 0.0
0.9 67 - 12 7614 | 2675273 0.00 0.00E+00 4.49E-06 0.0
Sum 18,773,128 7.614 2675273 - - - 1.00E+00 1.00E+00 1.0
Gold standard overlap
MIPS function similarity i# protein pairs pos neg sum{pos )| sum{neg ) sST‘T"[{;;st }}I P(MIPS|pos) | P(MIPS|neg) L
1--9 6,584 171 1,094 171 1,084 0.16 2.12E02 8.33E-04| | 25.5
® [10-99 25823 584 4,229 755 5323 0.14 7.25E-02 3.22E-03| | 225
T:II: 100 -- 1000 88,548 688 13,011 1,443 18,334 0.08 8.55E-02 9.91E-03 8.6
= |1000 - 10000 255,096 6,146 47,126 7,689 65460 0.12 763E-01 3.59E-02| | 21.3
10000 -- Inf 5,785,754 462 1.248.119 8.051 1,313,579 0.01 5.74E-02 9.50E-01] 0.1
Sum 6,161.805 8,051 1.313.579 - - - 1.00E+00 1.00E+00 1.0
Gold standard overlap
GO biological process similarity | # protein pairs pos neg sum(pos ) | sumineg ) Ssl:‘rr':,m :,},r P{(GO|pos) | P(GO|neg) L
1--9 4,789 88 819 88 819 0.11 1.17E-D2 1.27E-03 9.2
2 [10-99 20,467 555 3,315 643 4,134 0.16 7.38E-02 5.14E-03| | 14.4
£ [100--1000 58,738 523 10,232 1,166 14,366 0.08 B.95E-02 1.59E-02 44
= 1000 - 10000 152,850 1,003 28,225 2,169 42,591 0.05 1.33E-01 4.38E-02| — 30
10000 -- Inf 2,909.442 5,351 602,434 7,520 645,025 0.01 7A2E-01 9.34E-01 0.8
Sum 3,146,286 7.520 645,025 - - - 1.00E+00 1.00E+00 1.0
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O Probabilistic interactome (PI)

Gavin

Integration process

pull-down

f—%

Data source

connected

Bayes

C
® T
N @]

PIE

/ Naive
Bayes

Y2H

Ito.

o " PIT
< g Rosetta : |
T & |Cell cyclel |
© —__  |Naive
GO process [} Bayes
MIPS function PIP
Essentiality [

© American Association for the Advancement of Science. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.
Source: Jansen, Ronald, Haiyuan Yu, et al. "A Bayesian Networks Approach for Predicting Protein-protein Interactions from Genomic

Data." Science 302, no. 5644 (2003): 449-53.
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c

S % Gavin

> 9

[ a-—

=2 Ho Fully connected -

connected e
— (Uetz Compute probabilities for all 16
N PIE possible combinations
lto |
] . Gold-standard overap
Gavin Hh':' Uetz It.“ #prqtem sum(pos)/ |P(g,h,u,i| pos) |P(g.h,u,i| neg) L

(@) |(h)} (u) | @) pairs pos neg sum(pos) |sum(neg) |sum(neg)
1 1 1 0 16 B 0 B 0 - 7.27E-04 0.00E+00 -
1 0 0 1 53 26 2 32 2 16.0 3.15E-03 T.38E07| 4268.3
1 1 1 1 11 9 1 41 3 13.7 1.09E-03 3.69E-07| 2955.0
1 0 1 1 22 B 1 47 4 11.8 7.2TE-04 3.69E-07| 1970.0
1 1 0 1 27 16 3 B3 7 9.0 1.94E-03 1.11E06| 1751.1
1 0 1 0 34 12 5 75 12 6.3 1.45E-03 1.85E-06| 788.0
1 1 0 0 1920 337 209 412 221 1.9 4. 08E-02 T.T2ZEL5| 5294
0 1 1 0 29 5 5 418 227 1.8 6.06E-04 1.B5E06| 328.3
0 1 1 1 16 1 1 413 222 1.9 1.21E-04 3.69EL07| 328.3
0 1 0 1 39 3 4 421 231 1.8 3.64E-04 148E06| 246.2
0 0 1 1 123 B 23 427 254 1.7 7T.27E-04 BA9EDG B5.T
1 0 0 0 29221 1331 6224 1758 B4TE 0.3 1.61E-01 2.30ED3 70.2
0 0 1 0 730 5 112 1763 6590 0.3 6.06E-04 4.13E05 14.7
0 0 0 1 4102 11 44 1774 7234 0.2 1.33E-03 2.38E04 56
0 1 0 |0 23275 ar 5563 1861 12797 0.1 1.05E-02 2.05E03 5.1
0 0 0 0| 2702284 B389 2695949 8250 2708746 0.0 7.T4E01 9.95E-01 0.8

© American Association for the Advancement of Science. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Jansen, Ronald, Haiyuan Yu, et al. "A Bayesian Networks Approach for Predicting Protein-protein Interactions from Genomic Data."
Science 302, no. 5644 (2003): 449-53.
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-

S g Gavin

>3

c = . .

— 2l Ho Interpret with caution, as

connected
numbers are small
T Uetz
9 PIE
Ito |
) _ __~Told-standard overlap
Gevin Hh':' Ueiz lto | # protein 8 sum(pos)/ |P(g.h,u,i| pos) |P(g.h,u,i| neg) L

(9) |(h)| (u) | ()] pairs neg sum(pos) |sum(neg) |sum(neg)
1 1 1 0 1 6 0 6 0 - 7.27E-04 0.00E+00 -
1 0| 0 |1 53 26 2 32 2 16.0 3.15E-03 7.38E07| 4268.3
1 1 1 1 11 9 1 41 3 13.7 1.09E-03 3.69E-07| 2955.0
1 0| 1 1 22 6 1 47 4 11.8 7.27E-04 3.69E-07| 1970.0
1 1 0 |1 27 16 3 63 7 9.0 1.94E-03 1.11E-06| 1751.1
1 o 1 0 34 12 5 75 12 6.3 1.45E-03 1.85E-06| 788.0
1 1 0 |0 1920 337 209 412 221 1.9 4.08E-02 7.72EQ05| 529.4
0 1 1 0 29 5 5 418 227 1.8 6.06E-04 1.85E06| 328.3
0 1 1 1 16 1 1 413 222 1.9 1.21E-04 3.69E07| 3283
0 1 0 |1 39 3 4 421 231 1.8 3.64E-04 1.48E06| 246.2
0 0| 1 1 23 6 23 427 254 1.7 7.2T7E-04 8.49E06 85.7
1 0| 0 |0 29221 1331 6224 1758 6478 0.3 1.61E-01 2.30E03 70.2
0 0| 1 0 730 5 112 1763 6590 0.3 6.06E-04 4.13E05 14.7
0 0| 0 |1 4102 11 644 1774 7234 0.2 1.33E-03 2.38E04 56
0 1 0 |0 23275 a7 5563 1861 12797 0.1 1.05E-02 2.05E03 5.1
0 0] 0 | 0] 2702284 6389 2695949 8250 2708746 0.0 7.74E01 9.95E-01 0.8

© American Association for the Advancement of Science. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.
Source: Jansen, Ronald, Haiyuan Yu, et al. "A Bayesian Networks Approach for Predicting Protein-protein Interactions from Genomic Data."

Science 302, no. 5644 (2003): 449-53.
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— TF=FP

A 100 B 100

e PIP (de novo prediction) PIE
Essentiality € Gavin
10 -{|® Expression correlation o 10 - Ho
MIPS function
Uetz
GO biological process J o
- 4
z 7 : E
—
X & - &
= 51 & prediction <, |
o based on
- =
- single data
- : 1 _
O Mﬁ type all have 0
J | TP/EP<1
0.001 ! . . I 0.001 | . .
0.001 0.1 10 1000 100000 0.001 0.1 10 1000 100000
Lcuf Lcut

© American Association for the Advancement of Science. All rights reserved.

This content is excluded from our Creative Commons license. For more

information, see http://ocw.mit.edu/help/fag-fair-use/.

Source: Jansen, Ronald, Haiyuan Yu, et al. "A Bayesian Networks Approach

for Predicting Protein-protein Interactions fromm Genomic Data." Science 302,

no. 5644 (2003): 449-53. P(Data |true _PPI)

How many gold-standard events dowe 9| p(pata| false PPI)
score correctly at different likelihood -

cutoffs?
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Summary

Structural prediction of protein-protein
Interactions

High-throughput measurement of protein-
protein interactions

Estimating interaction probabilities

Bayes Net predictions of protein-protein
Interactions
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