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C. Burge Lecture #10
 

March 11, 2014
 

Markov & Hidden Markov Models of 

Genomic & Protein Features
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Modeling & Discovery of Sequence Motifs 

• Motif Discovery with Gibbs Sampling Algorithm 

• Information Content of a Motif 

• Parameter Estimation for Motif Models (+ others) 

2



  

 
 

 
  

 
 
 

 
 

 
 

  
 

 
 

Relative Entropy* 
pkRelative entropy, D(p||q) = mean bit-score: ∑ 

n 

pk log ( )
2

k =1 qk 
If qk = 1 then mean bit-score = RelEnt = 2w - Hmotif = Imotif

4w 

RelEnt is a measure of information, not entropy/uncertainty. 
In general RelEnt is different from Hbefore - Hafter  and is a better 
measure when background is non-random 

Example: qA = qT = 3/8, qC = qG = 1/8 

Suppose: pC = 1. H(q) - H(p) < 2 

But RelEnt D(p||q) = log2(1/(1/8)) = 3 bits 

Which one better describes frequency of C in background seq? 

* Alternate names: “Kullback-Leibler distance”, “information for discrimination” 
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Position-specific probability matrix (PSPM) 

5' Splice Site Motif: 

Pos  -3  -2  -1 +1 +2 +3 +4 +5 +6 
A 0.3 0.6 0.1 0.0 0.0 0.4 0.7 0.1 0.1


 C 0.4 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.2


 G 0.2 0.2 0.8 1.0 0.0 0.4 0.1 0.8 0.2
 

T 0.1 0.1 0.1 0.0 1.0 0.1 0.1 0.0 0.5 

Ex: TAGGTCAGT S = S1 S2 S3 S4 S5 S6 S7 S8 S9
 

P(S|+) = P-3(S1)P-2(S2)P-1(S3) ••• P5(S8)P6(S9)
 

‘Inhomogeneous’, assumes independence between positions
 

What if this is not true? 
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Inhomogeneous 1st-Order 

Markov Model
 

-3 -2  -1  1  2  3  4  5  6 

N (−3,−2) 
CAP-2(A |C) = 
N (−3) 

C 

-3 -2  -1  1 2 3 4 5 6 

S = S1 S2 S3 S4 S5 S6 S7 S8 S9 Inhomogeneous 
P(S|+) = P-3(S1)P-2(S2 |S1)P-1(S3 |S2) ••• P6(S9 |S8)R = 
P(S|-) = Pbg(S1)Pbg(S2 |S1)Pbg(S3 |S2) ••• Pbg(S9 |S8) 

Homogeneous 
s = log2R 
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WMM vs 1st-order Markov Models 

of Human 5’ss
 

Decoy 5’ss 

True
 5’ss WMM 

WMM 5’ss Score
 

Decoy 5’ss 

Markov 
True
 5’ss 

I1M 5’ss Score 
Markov models also improve modeling of transcriptional motifs - Zhou & Liu Bioinformatics 2004 
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Estimating Parameters for a Markov Model
 

-3 -2 -1 1 2 3 4 5 6 

N (−3,−2) 
CAP-2(A |C) = 
N (−3) 

C 

-3 -2 -1 1 2 3 4 5 6 

What about longer-range dependence?
 

• k-order Markov model 


- next base depends on previous k bases 
2nd-order Markov model 

~4k+1Parameters per position for Markov model of order k: 
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 Dealing With Limited Training Sets
 

Position: 1 2 3 4 5 
A 8

 C 1
 G 1
 T 0 

If the true frequency of T at pos. 1 was 10%, 
what’s the probability we wouldn’t see any Ts 
in a sample of 10 seqs? 

P(N=0) = (10!/0!10!)(0.1)0(0.9)10 = ~35% 

Motivates adding “pseudocounts” 

Training Set 

ACCTG 
AGCTG 
ACCCG 
ACCTG 
ACCCA 
GACTG 
ACGTA 
ACCTG 
CCCCG 
ACATC 
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Pseudocounts (Ψcounts)
 
Nt Count Ψcount Bayescount ML est. Bayes est.
 A 8 + 1 9 0.80 0.64
 C 1 + 1 2 0.10 0.14
 G 1 + 1 2 0.10 0.14
 T 0  + 1 1  0.00  0.07

 10 14 1.00 1.00 

ML = maximum likelihood (of generating the observed data)
 

Bayes est. = Bayesian posterior relative to Dirichlet prior
 

Good treatment of this in appendix of:
 
Biological Sequence Analysis by Durbin, Eddy, Krogh, Mitchison
 
See also: Probability and Statistics Primer (under Materials > Resources)
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Hidden Markov Models 

of Genomic & Protein Features
 

• Hidden Markov Model terminology 

• Viterbi algorithm 

• Examples 

- CpG Island HMM 

- TMHMM (transmembrane helices) 

Background reading for today’s lecture:
 

NBT Primer on HMMs, Z&B Chapter 6, Rabiner tutorial on HMMs
 

For Thursday’s lecture:
 

NBT Primer on RNA folding, Z&B Ch. 11.9 
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Hidden (HMMs) Hidden Markov Models

• Provide a foundation for probabilistic models of 

  linear sequence ‘labeling’ problems 

• Can be designed just by drawing a graph diagram 

• The ‘Legos’ of computational sequence analysis 

Developed in Electrical Engineering for applications to voice recognition 

Read Rabiner’s “Tutorial on hidden Markov models with applications ...” 
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Grandpa 
Simpson 

Marge 
Homer 

Bart 

Markov Model Example 
Genotype at the Apolipoprotein locus 
(alleles A and a) in successive generations of 
boxed Simpson lineage forms a Markov model 

Grandma Simpson 

Past 

Present 

This is because, e.g., Bart’s genotype is 
conditionally independent of Grandpa Simpson’s 
genotype given Homer’s genotype:  

P(Bart = a/a | Grandpa = A/a & Homer = a/a) 
= P(Bart = a/a | Homer = a/a)Future 
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Hidden Markov Model Example 
Phenotype -

LDL cholesterol
 
(observed)
 

150
 

Suppose that we can’t observe genotype directly, 
only some phenotype related to the A locus, and 
this phenotype depends probabilistically on the 
genotype. Then we have a Hidden Markov Model. 

250 

Probability 
A/a a/a 

100 150  200 250 300

          LDL cholesterol 
200 

Grandpa 
Simpson 

Homer 

Bart 

Genotype 
(hidden) 

A/a 

a/a 

a/a 
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HMMs as Generative Models
 
An HMM 

14

From Rabiner Tutorial
 



                      

“Sequence Labeling” Problems 

Example: Bacterial gene finding 

ORF 

Start Stop 

Open Reading Frame 

ORF 
accgatattcaaccatggagagtttatccggtatagtcgcccctaaataccgtagaccttgagagactgactcatgacgtagtcttacggatctaggggcatatccctagaggtacgg... 

Gene 1 Gene 2 ... 
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CpG Islands 
%C+G 

60 

50 

40 

30 

• Regions of high C+G content and relatively high abundance of 
CpG dinucleotides (normally rare) which are unmethylated 

• Associated with promoters of many human genes (~ 1/2) 
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CpG Island Hidden Markov Model
 

… 

Hidden 
Genome Island 

Pii 

Pig 

Pgi 

Pgg 

A C T C G  A G T  A
 

Observable 
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CpG Island HMM

Genome

Island

Pii = 0.999

Pgg = 0.99999 Pig = 0.001

Pgi = 0.00001

…

    C  G  A  T
CpG Island: 0.3 0.3 0.2 0.2
Genome: 0.2 0.2 0.3 0.3

A      C       T       C       G      A       G      T       A

“Emission
Probabilities” bj(k)

“Transition
probabilities” aij

“Initiation
probabilities” πj

Pg = 0.99, Pi = 0.01 

Rabiner notation
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CpG Island HMM III

…

A      C        T       C       G       A       G        T       A

Observe

Want to infer

But HMM is written in the other direction 
(observable depends on hidden)

19



 

                
             

 
  

  




 


 

Reversing the Conditioning 

(Bayes’ Rule)
 

Definition of Conditional Probability: 
P(A|B) = P(A,B) / P(B) 

Bayes’ Rule (simple form) 

P(B|A) = P(B)P(A|B) / P(A) 

Bayes’ Rule (more general form)
 

P(Bi|A) = P(Bi)P(A|Bi) 

Σ P(Bk) P(A|Bk)k 
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 Notation for HMM Calculations
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P(H = 1h , ..., nh ,O = 1o ,..., no )

P(H = 1ʹ′ h , ..., nʹ′ h ,O = 1o , ..., no )

Random vector of hidden states 

Specific hidden state values 

Random vector of observable 
data (DNA bases) 

Specific sequence of bases

Another specific set of hidden state values 



 
=

P(O = 1o , ..., no )

 
  

           

        
   

            
   

    

      




 

           

       
 

   

           
 

   

    

      

Reversing the Hidden/Observable 

Conditioning (Bayes’ Rule)
 

P( H = h1,h2 ,...,hn | O = o1,o2 ,..., on) 

P(H = h1,..., hn, O = o1, ...,on) 

Conditional Prob: 
P(A|B) = P(A,B)/P(B) 

= 
P(O = o1, ...,on) 

P( H = h1,..., hn)P(O = o1 ,...,on | H = h1,...,hn)= 
P(O = o1, ...,on) 

P(O = o1 ,...,on) a bit tricky to calculate, but is independent of 
h1,…, hn so can treat as a constant and simply maximize 

P(H = h1,..., hn,O = o1, ...,on) 
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Inferring the Hidden from the Observable

 (Viterbi Algorithm) 


Hopt  hopt  hopt  hoptWant to find sequence of hidden states = 1 , 2 , 3 , ... 
that maximizes joint probability: P( H = h1, ...,hn, O = o1,...,on) 
(optimal “parse” of sequence) 

Solution:

 Define R(i h)= probability of optimal parse of the
 subsequence 1..i ending in state h 

Solve recursively, i.e. determine R2 in terms of R1 , etc.(h) (h) 
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CpG Island HMM

Genome

Island

Pii = 0.999

Pgg = 0.99999 Pig = 0.001

Pgi = 0.00001

…

    C  G  A  T
CpG Island: 0.3 0.3 0.2 0.2
Genome: 0.2 0.2 0.3 0.3

A      C       T       C       G      A       G      T       A

“Emission
Probabilities” bj(k)

“Transition
probabilities” aij

“Initiation
probabilities” πj

Pg = 0.99, Pi = 0.01 

Rabiner notation



               

  
 

probability of optimal parse of the the state at t-1 that resulted inδt(i) ψt(i)subsequence 1..t ending in state i the optimal parse of 1..t ending in i 
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N  no. of states 
T  length of sequence 

 Viterbi Algorithm 

Rabiner 1989
 



Viterbi Example 
ACG 
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More Viterbi Examples 

What is the optimal parse of the sequence for the CpG 
island HMM defined previously? 

• (ACGT)10000 

• A1000C80T1000C20A1000G60T1000 

Powers of 1.5:

 N = 20 40 60 80 

(1.5)N = 3x103  1x107 3x1010 1x1014 
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Run time for k-state HMM on 

sequence of length L?
 

O(k2L) 

The computational efficiency of the Viterbi algorithm is a 
major reason for the popularity of HMMs 
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Midterm Logistics
 

Midterm 1 is Tuesday, March 18th during regular class time/room*
 

Will start promptly at 1:05pm and end at 2:25pm - arrive in time to get settled
 

*except for 6.874 students who will meet at 12:40 PM. 

Closed book, open notes: 


- you may bring up to two pages (double-sided) of notes if you wish 


No calculators or other electronic aids (you won’t need them anyway) 


Study lecture notes, readings/tutorials and past exams/Psets 1st, textbook 2nd 


Midterm exams from previous years are posted on course web site 


Note: there is some variation in topics from year to year 
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  Midterm 1 
Exam will cover course topics from Topics 1, 2 and 3 through Hidden 
Markov Models (but will NOT cover RNA Secondary Structure) 

R Feb 06 CB L2 DNA Sequencing, Local Alignment (BLAST) and Statistics 
T Feb 11 CB L3 Global Alignment of Protein Sequences 
R Feb 13 CB L4 Comparative Genomic Analysis of Gene Regulation 
R Feb 20 DG L5 Library complexity and BWT 
T Feb 25 DG L6 Genome assembly 
R Feb 27 DG L7 ChIP-Seq analysis (DNA-protein interactions) 
T Mar 04 DG L8 RNA-seq analysis (expression, isoforms) 
R Mar 06 CB L9 Modeling & Discovery of Sequence Motifs 
T Mar 11 CB L10 Markov & Hidden Markov Models (+HMM content on 3/13) 

Exam may have some overlap with topics from Pset 1+2 but will be biased towards 
topics NOT covered on PSets 

There may be questions on algorithms, but none related to python or programming 
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