

7.36/7.91/20.390/20.490/6.802/6.874
PROBLEM SET 3. Gibbs Sampler, RNA secondary structure, Protein Structure with
PyRosetta, Connections (25 Points)

Due: Thursday, April 3th at noon.

Python Scripts
All Python scripts must work on athena using /usr/athena/bin/python. You may not assume
availability of any third party modules unless you are explicitly instructed so. You are advised
to test your code on Athena before submitting. Please only modify the code between the
indicated bounds, with the exception of adding your name at the top, and remove any print
statements that you added before submission.

Electronic submissions are subject to the same late homework policy as outlined in the syllabus
and submission times are assessed according to the server clock. All python programs must
be submitted electronically, as .py files on the course website using appropriate filename for
the scripts as indicated in the problem set or in the skeleton scripts provided on course website.

1

P1. Gibbs Sampler (10 Points).

You are studying longevity in two species, A and B. A study was recently published showing
that a transcription factor called AGE is involved in regulating many aging- and stress-related
pathways in both species A and B. AGE is known to affect transcription by binding to the
promoters of its target genes. You have a list of aging-related genes whose expression
changed (as measured by RNA-seq) in age(-) mutants relative to wild-type in species A. From a
similar experiment, you obtained a list of genes whose expression changed in age(-) in species
B. You want to look at the promoters of these genes to see if you can find any enriched
sequence motif that might be a recognition site for AGE. You have two lists of sequences –
seqsA.fa contains the 30bp upstream from the AGE target genes in A, and seqsB.fa contains
30bp upstream from the AGE target genes in B. To do this analysis, you will implement a Gibbs
sampler!

(A – 6 points) Download the skeleton code gibbsSampler.py. The script requires two inputs:
the name of a FASTA file containing sequences believed to share a common motif, and the
length of the motif. The main function run is called at the very bottom of the script; the argument
x passed to run(x) is the number of iterations of the Gibbs sampler that will be run (initially set
to 1).

You can run the script with the sequences from A as the input file and motif length 7 by running

% python gibbsSampler.py seqsA.fa 7

The skeleton code should run without errors, though it will mostly be telling you that various sub-
functions haven’t been implemented yet. Now fill out the skeleton code so that it successfully
implements the Gibbs Sampler. Though you can use whatever approach you find best when
completing the script, you may find the suggestions in GibbsSamplerHelp.txt helpful to walk you
through which sub-functions you need to complete.

Once you’ve completed the code, set your Gibbs Sampler to run 1000 iterations and run it on
the seqsA.fa file. Run the algorithm several (~10) times and pick the highest scoring run. For
that run, report the background distribution, final weight matrix, motif score and relative entropy
(you can just copy and paste from the output of the script as long as your solution is in readable
table form; .doc provided on course website if helpful). Also, plot the relative entropy of the
motif after each iteration. What is the shape of this graph? What is the consensus motif? (Hint:
the highest scoring motif has a score over 600).

Final Matrix:

Pos A C G T

0 0.807692307692 0.025641025641 0.0897435897436 0.0769230769231

1 0.0384615384615 0.102564102564 0.179487179487 0.679487179487

2 0.0512820512821 0.820512820513 0.115384615385 0.0128205128205

3 0.0128205128205 0.0128205128205 0.025641025641 0.948717948718

2

http:seqsA.fa
http:seqsA.fa
http:gibbsSampler.py
http:gibbsSampler.py
http:seqsB.fa
http:seqsA.fa

4 0.0769230769231 0.846153846154 0.0384615384615 0.0384615384615

5 0.858974358974 0.0384615384615 0.0769230769231 0.025641025641

6 0.794871794872 0.0897435897436 0.025641025641 0.0897435897436

Motif score = 606.758419344

Relative entropy = 7.14156518812

Background = {'A': 0.298, 'C': 0.235, 'T': 0.288, 'G': 0.179}

The graph is sigmoidal – there’s an initial “burn in” phase where the algorithm is still searching
around, then a rapid rise when we start to randomly select more instances of the motif, followed
by a plateau as we converge towards the motif.

The consensus motif is ATCTCAA.

(B – 1 point) Weight matrices are not very visually informative for understanding a motif –
Sequence Logos are more human friendly. Run your code again, using the printToLogo()
function provided in the code to print out the final motifs for each sequence after the 1000
iterations are complete (you may want to comment out the other outputs). Go to

3

http://weblogo.berkeley.edu/logo.cgi and paste the list of aligned motifs into the input box and hit
Create Logo (note that the number of bits of information at each position doesn’t take into
account the background distribution of the sequences). Try this at least 3 different times with
different runs of your Gibbs sampler, and print off or include a screenshot of each logo as well
as the relative entropy and final score of that logo. Compare the results of your various runs.
Briefly explain what types of differences you observe and why the Gibbs sampler returns these
different motifs.

Motif score = 617.174 Motif score = 509.04 Motif score = 501.696

Relative entropy = 7.264 Relative entropy = 5.997 Relative entropy = 5.918

Common differences include shifts – leftmost logo is “best” after several runs, but other
commonly observed results were shifted either right or left (middle and rightmost above). Shifts
like this happen because even the shifted pattern occurs with higher probability, and if the Gibbs
sampler gets “stuck” on these shifted motifs, it is difficult for it to move away from them.

(C – 2 points) We now want to look for motifs in species B. Run the algorithm for length 7 and
seqsB.fa several times and report the background distribution, final weight matrix, motif score
and relative entropy (you don’t need to plot RelEnt at every iteration) from a representative run.
How does the relative entropy of the motif in species B compared to species A? Does this
mean that the AGE motif is easier or harder to find in species B? Why?

Final matrix:

Pos A C G T

0 0.820512820513 0.0641025641026 0.0384615384615 0.0769230769231

1 0.0769230769231 0.0769230769231 0.205128205128 0.641025641026

2 0.025641025641 0.833333333333 0.128205128205 0.0128205128205

3 0.0384615384615 0.025641025641 0.025641025641 0.910256410256

4 0.115384615385 0.807692307692 0.025641025641 0.0512820512821

5 0.923076923077 0.0384615384615 0.025641025641 0.0128205128205

6 0.75641025641 0.128205128205 0.0128205128205 0.102564102564

Motif score = 795.217460446

Relative entropy = 9.6265072489

4

http://weblogo.berkeley.edu/logo.cgi

Background = {'A': 0.165, 'C': 0.358, 'T': 0.137, 'G': 0.34}

The motif was easier to find in species B because species B is G/C rich. Therefore, the motif,
which is A/T rich, “sticks out” more in species B relative to the background – therefore both the
motif score and relative entropy are higher.

(D – 1 point) Assuming there was still one occurrence of the motif in every sequence, what
would happen if we increased the lengths of the sequences we are searching through? Run
your Gibbs sampler on seqsAext.fa, which contains sequences of length 90 instead of 30. Run
it several times and plot the relative entropy as a function of the number of iterations for a high
scoring run. How is this plot different from part (a)? Can you explain the difference?

The plot is still generally sigmoidal, but the initial “random exploration” period is longer – it takes
more iterations (on average) for the sampler to stumble onto an enriched motif. This makes
sense since it has to search through sequences that are 3 times longer – the probability of
randomly sampling the motif is lower. Given enough iterations, however, we will probably
eventually converge to the correct motif (though it’s harder).

0
2

4
6

8
R

el
at

iv
e

en
tro

py

0 200 400 600 800 1000
Number of iterations

5

P2. RNA secondary structure prediction (5 points).

(A - 3 points) Use the Nussinov algorithm to find the secondary structure that maximizes the
number of base-pairs in the following RNA sequence (show your work):

CGAGUCGGAGUC

Solution:

Note that dotted arrows indicate bifurcations. These were only drawn if the bifurcation had a
higher score than the other possibilities (e.g. scores from the left or bottom squares, etc.).
There are 3 possible tracebacks corresponding to two different structures (two of the tracebacks
are equivalent, follow different bifurcations to the same substructures):

6

	

	

Folded	
 structure	
 for	

traceback	
 #1:	

Folded	
 structure	
 for	

tracebacks	
 #2	
 and	
 3:	

Traceback	
 #1	

Traceback	
 #2	

Traceback	
 #3	

7

(B – 2 points) Run this sequence through the mfold RNA folding server (default parameters) at:

http://mfold.rit.albany.edu/?q=mfold/RNA-Folding-Form

Examine the top two structures it produces by looking at the “pdf”s under “View Individual
Structures:”. Notice that they don’t match the structure predicted by the Nussinov algorithm.
Examining the examples of real RNA secondary structures shown in lecture (slides 12, 32, 39 of
Lecture 11), generate a hypothesis for which criteria used by the mfold algorithm to describe
RNA thermodynamics prevents this algorithm from predicting the structure returned by the
Nussinov algorithm in part (A). Test your hypothesis by strategically inserting adenosines at
locations (e.g. in loops, between stems, across from bulges) necessary in the sequence above
and finding the minimum number that must be inserted so that the top mfold-predicted structure
has pairs between the same bases as in your Nussinov base pair-maximization structure.

The top two structures are shown above - the loops in the two hairpins of the Nussinov
algorithm-predicted structure are too short (only 1 G each) – real loops must be at least 3 bases
long.

Inserting A’s next to the G in the first loop reveals that 3 A’s must be added for the first stem to
pair all three given by the Nussinov algorithm (C/G, G/C, A/U). Because the two stems are also
too close to one other (no nucleotides between the two G’s at the bases of the loops), one A
must be added between these two G’s. Similarly, three A’s must be added to the second loop so
it’s large enough to pair the two in that stem (G/C and A/U). With this sequence
CGAGAAAUCGAGAGAAAUC, the structure that has the same two stems as the Nussinov-
derived structure is:

8

Output of sir_graph (©)
mfold_util 4.6

Created Wed Mar 19 13:48:58 2014

A
C G G

C G
G

G C U AU

G
G G

10
A

A U

10 G
C G C 3’

U

3’ dG = 2.00 [Initially 2.00] 14Mar19-13-48-56-dcddac9b93C 5’

5’

Output of sir_graph (©)
mfold_util 4.6

Created Wed Mar 19 13:48:59 2014

dG = 3.00 [Initially 3.00] 14Mar19-13-48-56-dcddac9b93

http://mfold.rit.albany.edu/?q=mfold/RNA-Folding-Form

	

Output of sir_graph (©)
mfold_util 4.6

Created Wed Mar 19 13:55:39 2014

dG = -3.50 [Initially -3.30] 14Mar19-13-55-37-4bcffdf8e8

C G A

G

A

A

A

UCG

A

G A

G

A

A

A

UC

5’

3’

10

9

P3. Protein structure with PyRosetta (6 points).

In this problem, you will explore protein structure with PyRosetta, an interactive Python-based
interface to the powerful Rosetta molecular modeling suite.

In the following, we will provide instructions on how to complete this problem on Athena’s Dialup
Service, where PyRosetta has previously been installed as a module for another class – you
may install PyRosetta (http://www.pyrosetta.org/dow) locally on your own computer and
complete the problem there, but we will not provide help for installation or operating system-
specific Python issues, so we highly recommend you complete it on Athena.

Log onto Athena’s Dialup Service
(http://kb.mit.edu/confluence/pages/viewpage.action?pageId=3907166), either at a workstation
on campus or from a Terminal on your personal machine:

ssh <your Kerberos username>@athena.dialup.mit.edu

Once logged on, load the PyRosetta module with the following 2 commands:

cd /afs/athena/course/20/20.320/PyRosetta

source SetPyRosettaEnvironment.sh

If you log onto Athena to complete the problem at a future time, you will have to execute these
two commands again, otherwise you will get the following error:

ImportError: No module named rosetta

Now, head to the course’s Athena directory, copy the pyRosetta_materials.zip folder of files
for this problem to your home directory (~), and then unzip it in your home directory with the
following commands:

cd /afs/athena/course/7/7.91/sp_2014

cp pyRosetta_materials.zip ~

cd ~

unzip pyRosetta_materials.zip

cd pyRosetta_materials

You should now be able to edit any of these files. Most of the code you’ll need is contained in
the script pyRosetta_1YY8.py that you’ll work with below, but for any additional functions you
want to use you can reference the PyRosetta documentation:
http://graylab.jhu.edu/~sid/pyrosetta/downloads/documentation/PyRosetta_Manual.pdf,
particularly Units 2 (Protein Structure in PyRosetta), 3 (Calculating Energies in PyRosetta), and
6 (Side-chain Packing and Design).

(A – 1 point) Go to the Protein Data Bank (http://www.rcsb.org/pdb/home/home.do) and search
for the protein we’ll be working with – 1YY8. What is this molecule? By looking at the “3D View”
tab of this protein, what is the predominant secondary structure (α-helix or β-sheet)?

10

http://www.pyrosetta.org/dow
http://kb.mit.edu/confluence/pages/viewpage.action?pageId=3907166
http://graylab.jhu.edu/~sid/pyrosetta/downloads/documentation/PyRosetta_Manual.pdf
http://www.rcsb.org/pdb/home/home.do

1YY8 is Cetuximab (pharmaceutical name), a chimeric mouse/human monoclonal antibody that
is an epidermal growth factor receptor (EGFR) inhibitor used for the treatment of metastatic
colorectal cancer and head and neck cancer. It is predominantly composed of β-sheets.

(B – 1 point) In order to open and edit the pyRosetta_1YY8.py file, you will need to use a text
editor on Athena’s Dialup Service, which doesn’t register commands from the mouse. If you’re
familiar with emacs or vim, these are great options, otherwise we recommend nano, a friendly
text editor that can be navigated with the arrow keys. Open the file for editing by typing:

nano pyRosetta_1YY8.py

You can scroll with the arrow keys, and additional commands are shown at the bottom of the
Terminal, where ^ is the Control key. Once you’ve made any changes, to exit and save, type
“Control + x” followed by “y” and then Enter to signify yes, you want to save your changes.

Look over how the code for part_b() loads the PDB file 1YY8.clean.pdb (which has been
cleaned to remove non-atomic annotation information) and prints out the protein’s angles and
energy score. Then run the script from the command line with python pyRosetta_1YY8.py (note
that it may take up a couple of minutes to load the module the first time you run it; it will also
print out many lines of initialization warnings before printing out what is in the code). What is the
energy of the structure, and what categories are the primary contributors (weighted score) for
and against the total energy? (describe the categories in words as on the lecture slides, not just
the shortened names that appear)

The largest contributor to the structure’s energy is the Van der Waals net attractive energy, and
the largest contributor against is Solvation.

11

(C – 1 point) In the code for part_c(), Monte-Carlo side-chain packing is implemented. At the
indicated region, add code to print out the post-packed energy score. At the bottom of the script,
uncomment part_c() and run the script. What is the energy of the structure after packing, and
which two categories have decreased the most compared to part (b)? (describe the categories
in words as on the lecture slides, not just the shortened names that appear)

The Van der Waals net repulsive energy and the Dunbrack rotamer energy have decreased the
most compared to part (b).

(Side-chain packing is a stochastic Monte Carlo process in PyRosetta, so you may get a slightly
different answer each time)

(D – 1 point) The 1YY8.rotated.pdb structure is the same as 1YY8.clean.pdb, except that one
residue’s phi or psi angle has been changed. Fill in the code for part_d() to load the rotated
structure and perform side-chain packing on it, printing out the energy of the structure before
and after side-chain packing. What is the energy before and after? Why is the post-side-chain
packing energy not the same as that of part (c)?

12

The energy after side-chain packing for the rotated protein is not the same as that of the original
protein because side-chain packing only optimizes the side-chain conformations, not the protein
backbone (e.g. phi and psi) angles, one of which we know is changed in the rotated protein.

(E – 1 point) Add code to part_e() to determine which angle (phi or psi, as well as which
residue number this angle belongs to) is changed in the rotated structure. Which residue/angle
is it?

13

The phi angle of residue 50.

(F – 1 point) Using the residue and angle you determined in part (e), add code to part_f() to
determine the energy of the structure with that angle changed to each of the possible angles
[-180,-179,….,180]. Which of these angles has the lowest energy, and does this agree with the
corresponding angle in the original structure from part (b)?

Add each of these energies to the energies_of_angle list, and then modify set_title to include
the residue and angle that you changed. If you’ve done this correctly, an energy_vs_angle.pdf
plot will be written to the directory where the script is. If you’re at an Athena workstation, you can
view this PDF directly (Home Folder > pyRosetta_materials); if you’ve ssh’ed into Athena from a
Terminal on your local computer, you can copy this PDF to your local computer and then open it
in your computer’s PDF viewer with the following commands using scp (secure copy):

<in a new Terminal on your computer, cd into your local computer’s directory where you want to
download the PDF>

scp <your Kerberos username>@athena.dialup.mit.edu:~/pyRosetta_materials/energy_vs_angle.pdf .

Using the phi angle of reside 50 that we determined in part (e),

14

The energy minimum occurs at φ = 53° (energy = 505.297). For the original residue 50 angles
from the structure in part (b), φ = 52.84, so our φ minimum matches the original structure as
expected.

	

	

-200 -150 -100 -50 0 50 100 150 200
Angle Degree

-50000

0

50000

100000

150000

200000

250000

E
ne

rg
y

Energy of 1YY8 by Residue 50 � degree

15

P4. Queuing theory/connections (4 points).

A small bank hires a management consultant to figure out if they can afford to advertise free
checking for one year (a $150 value) to any customer who has to wait in line more than 15
minutes. The consultant observes that, each minute that the bank is open, the waiting line gets
longer by one customer with probability ¼, and – if there is a line – the line gets shorter by one
customer (because a customer is served by a teller) with probability ¾. Let X be the probability
that the line never gets longer than 10 people in a 12-week period (this is a reference case,
whose empirical frequency is known to the bank), and let Y be the probability that the line never
gets longer than 15 people in a 12-week period (the proposed duration of the promotion). The
bank is open 2400 minutes every week.

Use an equation that was covered in class to calculate !" (!)
!" (!)

.

This scenario is analogous to finding local alignment of unrelated sequences of uniform
composition, in which we expect a match with probability ¼ and a mismatch with probability ¾.
That the bank line cannot go below 0 people is equivalent to resetting the local alignment score
to 0 if the score becomes negative. The bank line getting longer by 1 and shorter by 1
corresponds to a match score of +1 and a mismatch score of -1, respectively.

In the Gumbel distribution for BLAST statistics, MN=(length of database)(length of query) is the
total size of the search space because in local alignment you consider starting a match at every
position in the database vs. every position in the query. In the bank scenario, the “high scoring”
run of the line increasing to over 10 or 15 people could begin at any minute, so the search
spaces (=MN in the Gumbel distribution) are each (12 weeks*2400 minutes), respectively.

Recall that λ is the unique positive solution to:
!
!
 e! + !

!
 e!! = 1, which corresponds to λ = ln(3) (Problem Set 1, Q3(a)).

As indicated in the BLAST tutorial, K and
search space size and the scoring system, respectively; because the search space and scoring

λ can be thought of simply as natural scales for the

system are the same for X and Y, K will cancel out (see below).

In local alignment, the P-value is the probability that we achieve a score at least x or greater;
here were are interested in the complement of that, the probability that the score (length of the
line) never reaches above x: (1-Gumbel Distribution) = exp[-KMNe-λx].

Thus, we have:

ln (𝑋)
ln (𝑌) =

ln (exp[−K(12 ∗ 2400)𝑒!!"∗!" (!)])
ln (exp[−K(12 ∗ 2400)𝑒!!"∗!" (!)])

=
−K(12 ∗ 2400)𝑒!!"∗!" (!)

−K(12 ∗ 2400)𝑒!!"∗!" (!)
=
3!!"

3!!" = 243.

16

MIT OpenCourseWare
http://ocw.mit.edu

7.91J / 20.490J / 20.390J / 7.36J / 6.802J / 6.874J / HST.506J Foundations of Computational
and Systems Biology
Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

