
7.36/7.91/20.390/20.490/6.802/6.874  
PROBLEM SET 2. BWT, Library complexity, RNA-seq, Genome assembly, Motifs, 
Multiple hypothesis testing (31 Points) 
  
Due: Thursday, March 13th at noon.

Python Scripts 
All Python scripts must work on athena using /usr/athena/bin/python. You may not assume 
availability of any third party modules unless you are explicitly instructed so. You are advised 
to test your code on Athena before submitting. Please only modify the code between the 
indicated bounds, with the exception of adding your name at the top, and remove any print 
statements that you added before submission. 
 
Electronic submissions are subject to the same late homework policy as outlined in the syllabus 
and submission times are assessed according to the server clock. All python programs must be 
submitted electronically, as .py files on the course website using appropriate filename for the 
scripts as indicated in the problem set or in the skeleton scripts provided on course website. 
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Problem 1. Aligning reads to a genome using a Burrows Wheeler Transform and FM Index 
(9 points) 

For this exercise you will be implementing the core of a genome search function utilizing the 
Burrows Wheeler transform (BWT) and an FM-index.  We have provided scaffolding code so 
that you can focus on the core of the algorithm.   Please do not use Internet search tools to try to 
solve this problem – the point is for you to understand how the algorithm works. 

You will need the coding and testing files from the course website (keep them in the same 
folder). This includes scaffold code, a 10kb segment of the yeast genome, reads which you will 
map to the genome, and an index for testing with correct output. 

(A)  (7 pt.) Complete the LF mapping code in the _lf(self, idx, qc) function and the search 
code in the bounds(self, q) function (both in fmindex.py). 

To test your implementations we have provided the FM-index of an abbreviated version 
of the yeast genome in test.index. Running  

% python fm-search.py test.index yeast_chr1_reads.txt out.txt 

will place the mapped reads in out.txt and test your implementation. The correct output of 
this command is given in test_mapped.txt for you to check the correctness of your 
implementation.  Your implementations of the _lf(self, idx, qc) and bounds(self, q) 
functions are the answer to 1.1. Submit fmindex.py. 

   def _lf(self, idx, qc): 
        """ get the nearset lf mapping for letter qc at position idx """ 
        o = self._occ(qc) 
        c = self._count(idx, qc) 
        return o + c 
 
    def bounds(self, q): 
        """ find the first and last suffix positions for query q """ 
        """These are positions in the BWT string""" 
        """This is the meat of the FM search algorithm""" 
        top = 0 
        bot = len(self.data) 
        for i, qc in enumerate(q[::-1]):#iterate over letters in query string q in reverse 
            top = self._lf(top, qc)#returns occ(qc)+c(idx, qc), which maps the position in the last 
column to the position in the first column 
            bot = self._lf(bot, qc) 
            if top == bot: return (-1,-1)#since bottom is non-inclusive, top==bot implies that the 
string was not found. 
        return (top,bot) 
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(B)  (2 pt.) Now let’s make sure your implementation works on a larger genome.   First you 
will build the FM-index.   To build the index use the command: 

% python fm-build.py yeast_chr1_10k.txt yeast_chr1_10k.index 

Now let’s search using the FM index with the code you wrote, and use it to map some 
reads 

 
To map the reads: 

 
% python fm-search.py yeast_chr1_10k.index yeast_chr1_reads.txt   
mapped_reads.txt 

 
View the output: 

% more mapped_reads.txt 
example mapped_reads.txt (you will not have this same read): 
ATGGGTATCGATCACACTTCCAAGCAACAC count:1 matches:[561] 
… 

Submit your mapped_reads.txt on course website as the answer to 1.2. 

 

AATAGAATAACAGTTGTATGGGTCACCTGG count:1 matches:[8024] 
GGAAATTTATATATAAACTTCATTTACGTC count:1 matches:[7126] 
TGTATTCGTATGCGCAGAATGTGGGAATGC count:1 matches:[2453] 
ACTGCCAAATTTTTCTTGCTCATTTATAAT count:1 matches:[3086] 
GTACTTTGAAACCTGATTTATATATTGCAG count:1 matches:[6565] 
ACTTACCCTACTCTCAGATTCCACTTCACT count:1 matches:[459] 
TTCAGGACTTGCAAAAAGAATCTAACTGAT count:1 matches:[6980] 
AAATATTTGATTCATTATTCGTTTTACTGT count:1 matches:[4516] 
TAATATAACTTATCAGCGGCGTATACTAAA count:1 matches:[1181] 
AACATTGCAGCATAAATGCAAACCATTTGG count:1 matches:[7594] 
CTAGTTACAGTTACACAAAAAACTATGCCA count:1 matches:[1293] 
TTATGATATTTTTTTTTTATAGTAGTAGTG count:1 matches:[6940] 
TATTTTATTTTGTTCGTTAATTTTCAATTT count:1 matches:[1741] 
GCCTTATAAAACCCTTTTCTGTGCCTGTGA count:1 matches:[2504] 
TTTTCCACACCATGTTTAGAGTTATAAAGC count:1 matches:[7284] 
AAGTTAATATTATGGTGGTAGTATCTCAAA count:1 matches:[4660] 
TACTTACTACCACTCACCCACCGTTACCCT count:1 matches:[195] 
TCCATTCCCATATGCTAACCGCAATATCCT count:1 matches:[1017] 
AGTTTGGTACCATGACTTGTAACTCGCACT count:1 matches:[1375] 
TACAAATATATATTAAAGAAATCCAAACAA count:1 matches:[10326] 
GTTTTTTTAGTAATTTCTTTGTAAATACAG count:1 matches:[3634] 
GAAAAATACATGAATGACAGGTAAAAATAT count:1 matches:[3687] 
TACTACTTTGTAAACCAGTGGATTTTTGCT count:1 matches:[5939] 
TAGCAGTTGTTATAACGACAAATACAGGCC count:1 matches:[4209] 
GCCACTACATGACAAGCAACTCATAATTTA count:1 matches:[4324] 
TATATCATCAAAAAAAAGTAGTTTTTTTAT count:1 matches:[1714] 
GGTCACTAATGAGAACTTAAATAGTTTTCA count:1 matches:[5203] 
CACACCCACACACCCACACACCACACCACA count:1 matches:[6] 
TGTAGCGAATGTCCATTCATCATAACAGGT count:1 matches:[9081] 
TCTTAATTTCAATTTCATGCCCTCCTTCAC count:1 matches:[5141] 
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Problem 2. Library Complexity (5 points) 

Imagine you are responsible for sequencing DNA samples for your lab's latest important 
experiment. Using extensive simulations, you know that you need to observe at least 12 million 
unique molecules in order to test your current hypothesis. From previous experience, you know 
that each time a DNA library is constructed from a sample, it will contain exactly 40 million 
unique molecules (selected perfectly at random). You also know that C. elegans, your model 
organism, has a genome size of approximately 100 million base pairs.  
 
You can have your sample sequenced in units called lanes. Each lane gives you 10 million reads, 
and a library can be sequenced on as many lanes as you want. However, ever-protective of your 
grant money, you want to achieve your experimental goals in the most efficient way possible. 
Suppose that each sample collection and library preparation step costs $500 and that each 
sequencing lane costs $1000. 

 
(A)  (2 pt.) Assume that each molecule in the library had equal probability of being 

sequenced. What is the most cost-effective experimental design (number of libraries 
and lanes sequenced for each library) for achieving your goal of observing 12 million 
unique molecules? Show your work. 

 
 

Consider one library.  Compute M = K(L)*C = (1-exp(-N/40M))*40M. 
 One lane: 8.8M unique reads ($1500)     (1-poisspdf(0,.25))*40 
** Two lanes: 15.7M unique reads ($2500)     (1-poisspdf(0,.5))*40 
Consider two libraries: 
 When considering the 2nd library, all calculations for the number of unique reads within 
the 2nd library are the same (the same number of reads are coming off the sequencer and the 
average coverage L for these reads is the same). However, we only add 60% of them to the 
unique reads from the 1st library to get the total unique reads over both libraries since on average 
40% of the reads in the 2nd library will have already been covered by the 1st library. Therefore: 
 One lane each: 8.8M unique reads from first library, 8.8M*0.6=5.3M from second = 
14.1M ($3000) 
 Two lanes from 1st library, one lane from the 2nd: too expensive - ($4000) 
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(B) (3 pt.) Now suppose that there is variation in the selection probabilities across each 
molecule, which follows a negative binomial distribution with rate lambda = 0.25 (10 
million reads divided by 40 million molecules) and variance factor k = 2 (estimated 
from previous experiments). What is the most cost-effective experimental design for 
this situation? Show your work and comment on any differences between the two 
cases. 

 
Hint: A more common formulation of the negative binomial distribution is in terms of 
failures n and a success probability p. This conversion is found in the lecture slides. 
 

Same as (A) but we compute K(L) with the NB distribution. 
We know that p=L/(L + 1/k) and vary L with the number of lanes. 
Note: if using the Matlab or Mathematica implementations of the NegBin, you should 
actually use 1-p if calculating p as mentioned in lecture. 
  
One library: 
 ($1500) One lane: 7.34M unique reads      (1-nbinpdf(0,0.5,2/3))*40 
 ($2500) Two lanes: 11.7M unique reads  (1-nbinpdf(0,0.5,0.5))*40 
 *($3500) Three lanes: 14.7M unique reads  (1-nbinpdf(0,0.5,0.4))*40 
Two libraries: 
 ($3000) One lane each: 7.34M + 4.4M = 11.74M unique reads (not enough) 
  First library:    7.34M unique reads as above 
  Second library: 4.4M unique reads   (1-nbinpdf(0,0.5,2/3))*40*0.6 
 Two lanes (one library) then one (second library): over 12 million unique reads 
but too expensive 
 

 

Problem 3. Differential gene expression (4 points) 

You are analyzing RNA-seq data to identify differentially expressed genes between two 
treatment conditions. You have three biological replicates in each of the two conditions for a 
total of 6 samples, and you process and sequence each of the samples separately. 

(A) (1 pts) Imagine you first pool the sequencing results for each of the conditions, resulting 
in two pools. What kind of variation have you lost the ability to observe, and why might 
this variation be important? 
 
This is performing analysis without any replicates. If we observe a difference between 
the conditions, we are unable to know if this difference is due to differential expression 
between the different conditions or due to baseline variation between the replicates (just 
due to technical or biological variation). 
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(B) (3 pts) Devise an improved analysis strategy for these six samples and identify the 
sources of variation it can detect. Identify how you would estimate the mean-dispersion 
function for use in a negative binomial model of variation. 

Don’t pool the sequencing results together. Now, since we have replicates for each 
condition, we can compute an empirical dispersion value per gene, rather than estimating 
dispersion from genes which have similar expression levels across conditions (under the 
assumption that the condition effect is minimal for these genes). This allows us to detect 
technical/biological variation among samples within the same condition as well as 
variation in excess of that due to differential expression between the two conditions. 

Problem 4. RNA Isoform quantification (3 points) 

 

 

Consider the gene structure in the above figure. 

Exon numbers and sizes in nucleotides are indicated. The transcript can initiate at either of the 
arrows shown, and exons 2 and/or 3 can be spliced out. 

(A) (1 pt.) How many possible isoforms of this gene could exist? 

6 isoforms 

(B) (1 pt.) For each isoform, list the junction spanning RNA-seq reads that would support 
it. 
 

Isoform Reads 
1-4 Only 1-4 spanning reads 
1-2-4 1-2, and 2-4 spanning reads 
1-3-4 1-3 and 3-4 spanning reads 
1-2-3-4 1-2, 2-3, and 3-4 spanning reads 
2-4 Only 2-4 spanning reads 
2-3-4 2-3 and 3-4 spanning reads 
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(C) (1 pt.) Assuming single ended reads, what is the shortest read length that would 
guarantee the ability to unambiguously identify all isoforms of this gene if we require 
that a junction read must have minimum overlap of 5bp with each exon? 
 
260bp – the 150bp of exon 2, 100bp of exon 3, and 5bp overlap with exons 1 and 4 

Problem 5. de Bruijn graphs (5 points) 

Suppose you are interested in sequencing a particular RNA sequence. You opt to take a next 
generation sequencing approach and submit your sample to your local sequencing facility. You 
receive the following set of 6 bp reads in return, which are all in the same orientation. 

AGCTGT, CAGCTG, TTCTGC, GCTGTA, TCAGCT, CTGTAT, TGTAGC, TTCAGC, 
CTGTAG, TTTCAG 

(A) (1 pt.) Construct the corresponding de Bruijn graph with k = 5 
(B) (1 pt.) Simplify any chains in the graph. Remove any tips present in the graph.  
(C) (1 pt.) Identify any bubbles in the graph. Resolve the bubbles by removing the path 

most likely to be caused by a sequencing error.  
(D) (1 pt.) Which read(s) contain sequencing errors? Identify the error(s). 
(E) (1 pt.) Write the sequence represented by the de Bruijn graph after the error 

correction steps. 
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Problem 6. Modeling and information content of sequence motifs (5 points). 

To analyze gene evolution in three phylogenetic groups of protists, you collect samples of three 
different protist species, A, B, and C, that represent these lineages. You conduct both genome 
sequencing and cDNA sequencing from each and use spliced alignment of cDNAs to genomes to 
obtain sets of 10,000 confirmed 3' splice site (3'SS) sequences from each species.  In all three 
species the invariant AG at the end of each intron is preceded by an 8 base polypyrimidine tract 
(PPT), with frequencies fC = fT = !

!
 at each position.  Your goal is to develop probabilistic models 

of the PPT motif in each species for use in exon-intron prediction.  Throughout this problem, 
unless instructed otherwise, you should describe the simplest possible model (fewest parameters) 
that accurately models the frequencies of all 8mers in the training data (and should therefore give 
good predictive accuracy). Information content of models should be calculated using the formula 
given in lecture: I = 2w – H(model), in bits, where w is the width of the motif and H(model) is 
the Shannon entropy of the model. The abbreviation Y8 refers to 8mers that consist exclusively 
of pyrimidine (C or T) nucleotides. 

 

(A) (1 pt.) In species A, all four dinucleotides CC, CT, TC, and TT occur equally often 
𝑓𝐶𝐶 = 𝑓𝐶𝑇 = 𝑓𝑇𝐶 = 𝑓𝑇𝑇 =

!
!

 at each of the seven pairs of positions (1,2), (2,3),…,(7,8), 
and each 8mer of the form Y8 occurs with frequency 2-8.  In one sentence, describe a 
model for the PPT of species A.  What is the information content of this model?  

	
  

The	
  simplest	
  model	
  is	
  a	
  weight	
  matrix	
  model,	
  with	
  P(C)	
  =	
  P(T)	
  =	
  ½	
  at	
  each	
  position.	
  

H(model)	
  =	
  8	
  x	
  [-­‐((	
  ½	
  log2	
  (	
  ½	
  )	
  +	
  ½	
  log2	
  (	
  ½	
  )	
  )]	
  =	
  8	
  bits.	
  	
  

Information	
  =	
  (2	
  x 8)	
  –	
  8	
  =	
  8	
  bits. 

 

(B) (1 pt.) In species B, all four dinucleotides CC, CT, TC, and TT are equally likely 
𝑓𝐶𝐶 = 𝑓𝐶𝑇 = 𝑓𝑇𝐶 = 𝑓𝑇𝑇

but examining the frequencies of 8mers reveals that 
one sentence, describe a model for the PPT of species B.  What is the information content 

= !
!

 at each of the seven pairs of positions (1,2), (2,3),…,(

𝑓𝑇!
= 𝑓𝐶!

= 𝑓(

7,8), 

𝑇𝐶)!
= 𝑓(𝐶𝑇)!

= !
!
.  In 

of this motif? 

The	
  simplest	
  model	
  is	
  one	
  that	
  assigns	
  𝑓𝑇!
=	
  𝑓𝐶!

= 𝑓(𝑇𝐶)!
= 𝑓(𝐶𝑇)!

= !
!
.	
  	
  	
  (4	
  nonzero	
  

probabilities)	
  

H(model)	
  =	
  -­‐[	
  4	
  x	
  (	
  ¼	
  log2	
  (	
  ¼	
  )	
  )	
  ]	
  =	
  2	
  bits	
  (using	
  the	
  fact	
  that	
  0  log! 0 	
  is	
  defined	
  to	
  be	
  0	
  (by	
  
continuity)	
  in	
  information	
  theory).	
  

Therefore,	
  Information	
  =	
  (2	
  x 8)	
  –	
  2	
  =	
  14	
  bits.	
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(C) (3 pt.) In species C, 𝑓𝐶𝐶 𝑓𝑇𝑇 𝑓𝑇𝐶 𝑓𝐶𝑇  at each of the seven pairs of 
consecutive positions (1,2), (2,3),…,(7,8), and the frequencies of all 8mers of the form Y8 
are equal to 3a+b/Z where a is the number CC dinucleotides in the 8mer and b is the 

! !

number of TT dinucleotides in the 8mer, and Z is the normalization constant that causes 
the frequencies to sum to 1.  In one sentence, describe a model for the PPT of species B.  
What is the information content of this motif? 

Recognize	
  that	
  this	
  distribution	
  can	
  be	
  achieved	
  by	
  use	
  of	
  a	
  first-­‐order	
  Markov	
  model	
  
with	
  parameters	
  fC	
  =	
  fT	
  =	
  

!
!
	
  at	
  position	
  1,	
  and	
  conditional	
  probabilities	
  P(C|C)	
  =	
  P(T|T)	
  =	
  ¾	
  

and	
  P(C|T)	
  =	
  P(T|C)	
  =	
  ¼	
  at	
  all	
  subsequent	
  positions.	
  

 

To	
  calculate	
  the	
  information	
  content	
  of	
  the	
  model,	
  let	
  𝑘 𝑎 𝑏 	
  be	
  the	
  number	
  
of	
  CT	
  and	
  TC	
  dinucleotides.	
  The	
  probability	
  of	
  generating	
  an	
  8mer	
  sequence	
  with	
  𝑘	
  CT	
  

𝑘 𝑘
and	
  TC	
  dinucleotides	
  is	
  𝑃

7 − ( +

𝑖 𝑘

=

=    ! ! ! !!

! ! !

2

	
  (the	
  factor	
  of	
  ½	
  is	
  becau

)

se	
  there	
  is	
  a	
  ½	
  

probability	
  of	
  the	
  first
!
	
  nucleotide	
  –	
  C	
  or	
  T).	
  The	
  total	
  number	
  of	
  sequences	
  with	
  𝑘	
  CT	
  and	
  

TC	
  dinucleotide

=

s	
  is	
   𝑘

2

	
  (the	
  factor	
  of	
  2	
  is	
  for	
  the	
  two	
  possible	
  first	
  nucleotides	
  –	
  C	
  or	
  T).	
  
Yo
!

u

!

	
  

!

can	
  check	
  that
!

	
  t

!

h

!

e	
  to
!

tal
!

	
  pr
!

obabi
!

li
!
t
!
y	
  of

=

	
  a

1

ll	
  sequences	
  
𝑘 𝑘

𝑘 𝑃𝑡𝑜𝑡𝑎𝑙 𝑘 𝑘 𝑘 	
  as	
  required.	
  

	
  
The	
  Shannon	
  entrop

−

y	
  o
!
f	
  the

!

	
  mo

!

tif	
  i

!

!
s:	
  

𝑝𝑖 log!
!!

𝑝𝑖

!

𝑃
𝑖

= − 𝑡𝑜𝑡𝑎𝑙 𝑘 𝑃𝑖 𝑘 	
  

!
7 1 1 3 !!

𝑘
	
  

!
!!

∗ log

Therefore,	
  Informat

=
1 !

!

ion

−
𝑘 𝑘

𝑏𝑖𝑡𝑠	
  
𝑘

𝑘

1 𝑘 3 !𝑘

	
  =	
  

!

(2	
  

!

x 

2

8)	
  –

2 4 4
  ∗ log

2 4 4
= 6.68  

6.68=	
  9.32	
  bits.	
  

	
  

 

 
 

= = ! , = = !
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(Extra 6.874 Problem)  Multiple Hypothesis Testing (4 points) 

Differential expression analysis of RNA-seq data involves testing thousands of hypotheses in a 
single experiment. To limit false positives, it is necessary to adjust P-values. Two popular 
methods for doing so are Bonferroni correction and Benjamini-Hochberg. 

Consider the following uncorrected p-values of 20 genes from a gene expression study in which 
we wish to identify differentially expressed genes, say using DEseq.

Gene P-value 11 0.01500 
1 0.0002 12 0.02300 
2 0.0005 13 0.02400 
3 0.0040 14 0.03400 
4 0.0060 15 0.03900 
5 0.0070 16 0.04700 
6 0.0080 17 0.05000 
7 0.0090 18 0.05800 
8 0.0110 19 0.06000 
9 0.0120 20 0.09800 
10 0.0120 

(A)  (1 pt.) Apply Bonferroni correction and list the genes that would be reported as 
differentially expressed at alpha = 0.05. Show how you obtain the list. 

 
Genes 1 and 2. Use cutoff 0.05/20 = 0.0025 

 
 

(B)  (1 pt.) List the genes that would be reported as differentially expressed using Benjamini-
Hochberg correction at alpha = 0.05. Show how you obtain the list. 

Genes 1-14 are significant. Show threshold calculation at least near cutoff. 

       pvals threshold   
 [1,] 0.0002    0.0025 1 
 [2,] 0.0005    0.0050 1 
 [3,] 0.0040    0.0075 1 
 [4,] 0.0060    0.0100 1 
 [5,] 0.0070    0.0125 1 
 [6,] 0.0080    0.0150 1 
 [7,] 0.0090    0.0175 1 
 [8,] 0.0110    0.0200 1 
 [9,] 0.0120    0.0225 1 
[10,] 0.0120    0.0250 1 
[11,] 0.0150    0.0275 1 
[12,] 0.0230    0.0300 1 
[13,] 0.0240    0.0325 1 
[14,] 0.0340    0.0350 1 
[15,] 0.0390    0.0375 0 
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[16,] 0.0470    0.0400 0 
[17,] 0.0500    0.0425 0 
[18,] 0.0580    0.0450 0 
[19,] 0.0600    0.0475 0 
[20,] 0.0980    0.0500 0 

 
 

(C)  (2 pt.) How do the two lists differ in composition? What does this show about the 
stringency of these corrections? 
 
Bonferroni results in far fewer significant genes and is more stringent 
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