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From the last lecture, we followed gene segregation in a cross of a true breeding shibire 

fly with a wild type fly. 

Shibire x wild type 

↓ 

F1: all not paralyzed 

↓ 

F2:  3 not paralyzed : 1 paralyzed 

This is the segregation pattern expected for a single gene. But in an actual experiment 

how do we know that the phenotypic ratio is really 3 : 1 ? 

There is no logical way to prove that we have a 3 :1 ratio. Nevertheless, we can think of 

an alternative hypothesis then show that the alternative hypothesis does not fit the 

data. Usually, we then adopt the simplest hypothesis that still fits the data. 

A possible alternative hypothesis is that recessive mutations in two different genes are 

needed to get a paralyzed fly. 

In this case a true breeding paralyzed fly would have genotype: aaaaa/aaaaa , bbbbb/bbbbb

Whereas wild type would have genotype: AAAAA/AAAAA , BBBBB/BBBBB

F1: AAAAA/aaaaa BBBBB/bbbbb not paralyzed 

F2: p(aaaaa/aaaaa and bbbbb/bbbbb) = (1/4 )2 = 1/16 

p(aaaaa/aaaaa and BBBBB/–––––) = 1/4 x 3/4 = 3/16 

p(bbbbb/bbbbb and AAAAA/–––––) = 3/16 

p(AAAAA/––––– and BBBBB/–––––) = the rest = 9/16 

This is the classic ratio for two gene segregation 9 : 3 : 3 : 1

 paralyzed 

For our hypothesis we should see a phenotypic ratio of 15 not paralyzed : 1 paralyzed. 



Therefore, to distinguish one-gene segregation from two-gene segregation we need a 

statistical test to distinguish 3 : 1 from 15 : 1. Intuitively, we know that in order to get 

statistical significance, we need to look at a sufficient number of individuals. 

For a chi-square testchi-square testchi-square testchi-square testchi-square test you start with a specific hypothesis that gives a precise 

expectation. The test is then applied to the actual experimental results and will give the 

probability of obtaining the results under the hypothesis. The test is useful for ruling 

out hypotheses that would be very unlikely to give the actual results. 

Say we look at 16 flies in the F2 and observe 14 not paralyzed and 2 paralyzed flies. 

Under the hypothesis of two genes we expect 15 not paralyzed flies and 1 paralyzed fly. 

We calculate the value χ2 using the formula below. Where O is the number of individuals 

observed in each class and E is the number of individuals expected for each class. 

12Σ (O–E)2 12 

χ2 = = + = 0.067 + 1 = 1.067 
E 15  1

(all classes)

degrees of freedom (df) = number of classes – 1 

From the table using 1 df, 0.05 < p < 0.5 

The convention we use is that p ≤ 0.05 constitutes a deviation from expectation that is 

significant enough to reject the hypothesis. Therefore, on the basis of this sample of 16 

flies we can’t rule out the hypothesis that two genes are required. 

Say we look at 64 F2 flies and find that 12 are paralyzed. For the hypothesis of two 

genes the expectation is that 4 would be paralyzed. The χ2 for this data: 

82 82 

χ2 = + = 1.07 + 16 = 17.1
60  4

From the table p < 0.005 so we reject the two-gene hypothesis. 

Let’s use this data to test the hypothesis of one gene segregation which would be 

expected to give 16 paralyzed flies from 64 F2 flies, 

42 42 

χ2 = + = 0.33 + 1 = 1.33 
48  16 

From the table using 1 df, 0.5 < p < 0.5. Thus the data still fits the hypothesis of one-

gene segregation. 



So far, the hypothesis that one gene is responsible for the paralyzed trait is the simplest 

explanation that fits the data. 

The way to distinguish most easily between a heterozygote and a homozygote expressing 

a dominant trait is to cross to a homozygous recessive test strain. 

Test crossTest crossTest crossTest crossTest cross: cross to homozygote recessive: 

AAAAA/AAAAA x aaaaa/aaaaa gives all AAAAA/aaaaa . i.e. all offspring will express the dominant trait. 

AAAAA/aaaaa x aaaaa/aaaaa gives 1/2 AAAAA/aaaaa and 1/2 aaaaa/aaaaa. i.e. one half of the offspring will express

 the dominant trait. 

Mendelian inheritance in humansMendelian inheritance in humansMendelian inheritance in humansMendelian inheritance in humansMendelian inheritance in humans

For humans we can’t do test crosses, of course, but by following inheritance of a trait for 

several generations the modes of inheritance can usually be identified by applying basic 

principles of Mendel. The following are guidelines for identifying different modes of 

inheritance in pedigrees. 

Autosomal dominantAutosomal dominantAutosomal dominantAutosomal dominantAutosomal dominant

i)i)i)i)i)  Affected individuals must have at least one affected parent 

Exceptions to this rule will occur if a new mutation arises in one of the parents (in 

real life a more likely explanation is extramarital paternity). Another possibility is 

incomplete penetrance, where other genetic or environmental factors prevent the 

trait from being expressed in one of the parents. 

Autosomal recessiveAutosomal recessiveAutosomal recessiveAutosomal recessiveAutosomal recessive

i)i)i)i)i)  When both parents are carriers, on average 1/4 of the children will be affected. 

ii)ii)ii)ii)ii)  When both parents are affected, then all of the children will be affected. 

iii)iii)iii)iii)iii)  If the trait is very rare then consanguinity is likely. That is, it is likely that 

parents of affected children are themselves related (e.g. cousins). 

X-linked inheritanceX-linked inheritanceX-linked inheritanceX-linked inheritanceX-linked inheritance
O XcX+  x O X+Y


 (carrier)

↓

X+Y


 (carrier)  (color blind)


O XcX+, O X+X+, O XcY, O 



i)i)i)i)i) When parents are a carrier O and an unaffected O , then on average, 1/2 of the 

daughters will be carriers and 1/2 of the sons will be affected. 

If the trait is rare then the vast majority of affected individuals will be male 

which is the hallmark of X-linked traits. 

ii)ii)ii)ii)ii) Affected sons inherit the allele from mother 

• Maternal uncles often affected

• Since inherited only from mother, inbreeding doesn’t increase the

probability of an affected O . 

Conditional probabilitiesConditional probabilitiesConditional probabilitiesConditional probabilitiesConditional probabilities

Consider the following pedigree of a recessive trait. 

= female 

= male 

? 
p(affected child) = p(mother carrier and father carrier and affected child) 

= 2/3 x 2/3 x 1/4 = 1/9 

However, if they have a child that is affected we must reassess the probability that 

their next child will be affected. 

p(both parents carriers) = 1. So, p(next child affected) = 1/4 

This example shows how probability calculations are based on information. The 

probability changes not because the parents have changed but because our information 

about them has. 



HANDBOOK for PROBABILITY CALCULATIONS 

Many problems in diploid genetics rely on basic concepts of probability.  This is because each individual 
inherits at random only one of two possible copies of a gene from each parent. Thus, breeding experi­
ments or inheritance in human pedigrees have probabilistic rather than absolute outcomes. Everyone 
has an intuitive sense of probability but what we need is a precise definition that will allow probabilities 
to be manipulated quantitatively. 

Probabilities are usually defined in terms of possible outcomes of a trial. A trial could be the toss of a 
coin, the roll of a die, or two parents having a child. If we define a specific event a, p(a) or the probabil­
ity of a, can be defined as follows: after a very large number of trials, p(a) is simply the fraction of trials 
that give outcome a. In principle, we could determine p(a) by actually performing a large number of 
trials and directly measuring the fraction of trials that produce event a. This is sometimes called the 
“Monte Carlo method” named after a famous European casino and works well for computer simulations 
of complicated phenomena. However, in many cases there is a much simpler way to calculate probabili­
ties. To directly calculate classical probabilities one must know enough about a process to break down 
the possible outcomes of a trial into some number of equally probable events. In these cases the prob­
ability of event a is: 

p(a)= na 

N 

where na is the number of outcomes that satisfy the criteria for a and N is the total number of equally 
probable outcomes. Note that since N includes all possible outcomes, na ≤ N and 0 ≤ p(a) ≤ 1. 

Example: A couple has two children, what is the probability that they are both girls?   Assuming that the 
chances of having a boy or a girl are equal, there are 4 equally probable ways of having two children 
(boy, boy; girl, boy; boy, girl; girl, girl) and the probability of two girls is 1/4 or 0.25. 

For classical probability problems you will always be able to arrive at the correct answer by writing out 
all of the possible outcomes of a trial and counting the fraction of outcomes that satisfy the criteria for a 
given event. Often, enumerating all of the outcomes for a trial is time-consuming and error-prone.  It is 
usually faster and easier to break a problem down into simple parts and then to combine the probabilities 
for the individual parts. The following are useful ways that probabilities can be combined to speed 
probability calculations. 

PRODUCT RULE 

p(a and b) = p(a) x p(b) if a and b are independent. 

Two events are considered independent if they do not influence one another.  The criterion of indepen­
dence is very important — application of the product rule for events that are not independent will give 
an incorrect answer. 



Examples: To find the probability that a couple with three children have three boys we first note that the 
sex of one child has no influence on the sex of another and therefore constitute independent events. For 
each child, p(boy ) = 1/2 and by the product rule p(3 boys) = 1/2 x 1/2 x 1/2 = 1/8. 

First, for a recessive trait to be expressed the progeny must inherit the recessive allele from both the 
mother and the father.  Since the probability of inheriting a given allele from a heterozygote is 1/2, 
p(mutant from mother and mutant from father) = 1/2 x 1/2 = 1/4. Second, since unlinked genes are 
inherited independently, we can use the product rule again to calculate p(recessives at gene A and reces­
sives at gene B) = 1/4 x 1/4 = 1/16. 

SUM RULE 

The probability that either a or b will occur can be written as p(a or b). If two events a and b cannot 
both occur they are mutually exclusive and the number of events that satisfy a or b is na + nb. It should 
be apparent from our definition of probability that: 

n + n
a bp(a or b) = n +n = a b = p(a) + p(b)
N N N 

A useful special case of the sum rule arises when we consider p(not a). By definition p(a) and p(not a) 
are mutually exclusive and they encompass all possible outcomes. Thus: 

p(a or not a) = 1 = p(a) + p(not a) and p(not a) = 1 – p(a) 

Examples: Find the probability that a family with three children has at least one girl. We begin by 
noting that instead of trying to count all possible families with at least one girl it is easier to realize that 
p(at least one girl) is the same as p( not all boys). Since p(all boys) = 1/8, p(not all boys) = 1– 1/8 = 7/8 
= p(at least one girl). 

In a cross where both parents are heterozygous for recessive mutations in two unlinked genes, what is 
the probability that one of their progeny will express at least one of the dominant traits? p(at least one 
dominant) = 1 – p(both recessive), and from above, p(both recessive) = 1/16. Therefore p(at least one 
dominant) = 1 – 1/16 = 15/16. 

In cases where two events a and b are independent but not mutually exclusive, we can still calculate 
p(a or b). In this case we note that the two events a and (b and not a) are mutually exclusive and 
encompass all outcomes that satisfy a or b or both. For these mutually exclusive events we can apply 
the sum rule. Thus, 

p(a or b) = p(a or [b and not a]) = p(a) + p(b and not a) 

Since b and not a are independent: 

p(a) + p(b and not a) = p(a) + p(b) x p(not a) = p(a) + p(b) x [1 – p(a)] = 

p(a) + p(b) – [p(a) x p(b)] 

Note that in the case where a and b are mutually exclusive, p(a) x p(b) = 0 giving the same formula as 
for the sum rule. 

Example: We can use this formula as another way to solve the last example, which is a case in which the 
two events are independent but not mutually exclusive. p(at least one dominant) = p(dominant at gene A 
or dominant at gene B) = p(dominant at gene A)+p(dominant at gene B) – [p(dominant at gene A) x 
p(dominant at gene B )] = 3/4 + 3/4 – [3/4 x 3/4] =6/4 – 9/16 = 15/16. 


