
Lecture 25 

Population Genetics 

Until now, we have been carrying out genetic analysis of individuals, for the 
next three lectures we will consider genetics from the point of view of 
groups of individuals, or populations. 

We will treat this subject entirely from the perspective of human population 
studies where population genetics is used to get the type of information 
that would ordinarily be obtained by breeding experiments in experimental 
organisms. 

At the heart of population genetics is the concept of allele frequency 

Consider a human gene with two alleles: A and a 

The frequency of A is f(A) ; the frequency of a is f(a) 

Definition: p = f(A) q = f(a) 

p and q can be thought of as probabilities of selecting the given alleles by 
random sampling. For example, p for a given population of humans is the 
probability of finding allele A by selecting an individual from that population 
at random and then selecting one of their two alleles at random. 

Since p and q are probabilities and in this example there are only two 
possible alleles; 

p + q = 1 

Correspondingly, there are three possible genotype frequencies: 

f(A/A) + f(A/a) + f(a/a) = 1

 We usually can't get allele frequencies directly but must derive them from 
the frequencies of the different genotypes that are present in a population 

p  = f(A/A) + 1/2 f(A/a)
 (homozygote) (heterozygote) 

q  = f(a/a)  + 1/2 f(A/a) 



Example: M and N are different blood antigens specified by alleles of the 
same gene. The antigens are codominant so a simple blood test can 
distinguish the three possible genotypes. 

f(M/M) = 0.83, f(M/n) = 0.16, f(N/N) = .01 

p = f(M) = .83 + .08 = 0.91 

q = f(N) = .01 + .08 = 0.09 

Note: we can get both p and q with just two of the genotype frequencies 
because the three genotype frequencies must total to a frequency of 1.0:

 f(M/M) + f(M/N) + f(N/N) = 1 

Now let's think about how the inverse calculation would be performed. That 
is, how to derive the genotype frequencies from the allele frequencies. To 
do this we must make an assumption about the frequency of mating of 
individuals with different genotypes. If we assume that the gametes mix at 
random, we can calculate the compound probabilities of obtaining each 
possible combination of alleles. 
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Thus the genotype frequencies for the next generation are: 

f(A/A) = p2, f(A/a) = 2pq, f(a/a) = q2 



We can now calculate the new p1 for this generation using the formula for 
deriving allele frequencies from genotype frequencies: 

p1  = f(A/A) + 1/2 f(A/a)

 = p2 + pq

 = p (p + q)

 = p 

We obtain the simple but very important result that when mixing of gametes 
occurs at random, the allele frequencies do not change from one generation 
to the next. 

This is a condition known as Hardy-Weinberg Equilibrium 

If we know the genotype frequencies and allele frequencies then we can ask 
whether the population is in H-W equilibrium for that gene by determining 
whether the genotype frequencies reflect random mixing of alleles. Consider 
two different populations that have different genotype frequencies and 
different allele frequencies but have different genotype frequencies. 

M/M M/N N/N p q 

US Caucasians 0.29 0.5 0.21 0.54 0.46 

American Inuit 0.84 0.16 0.008 0.92 0.08 

Although the allele frequencies are quite different, both populations have 
the genotype frequencies and allele frequencies that fit H-W equilibrium. 

Consider the two sample populations that have the same allele frequencies 
but have different genotype frequencies. 

A/A A/a a/a p q 

Population I: 0.20 0.20 0.60 0.3 0.7 

Population II: 0.09 0.42 0.49 0.3 0.7 

Only population II satisfies H-W criteria: p2 = 0.09, 2pq = 0.42, q2 = 0.49 



1.0 

Here is a helpful way to look at frequencies in H-W equilibrium: 
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Before we needed at least two of the genotype frequencies to calculate 
allele frequency but if we know that the population is in H-W equilibrium we 
can get both allele frequencies and all genotype frequencies from just one of 
the genotype frequencies or one of the allele frequencies. 

How good is the random mating assumption in actual human populations? The 
chief criteria necessary for a population to be H-W equilibrium is random 
mating among individuals in the population. These are some of the conditions 
that affect random mating assumption and therefore may affect H-W 
equilibrium: 

1) Genotypic effects on choice of partner: 
Examination of allele frequencies and genotype frequencies for most 
genes in the human populations reveals that they closely fit H-W 
equilibrium. The implication is that in general, humans select their 
mates at random with respect to individual genes and alleles. This may 
seem odd given that personal experience says that choosing a mate is 
anything but random. However the usual criteria for selecting mates 
such as character, appearance, and social position are largely not 



determined genetically and, to the extent that they are genetically 
determined, these are all very complex traits that are influenced by a 
large number of different genes. The net result is that our decision 
of with whom we have children does not in general systematically 
favor some alleles over others. 

One of the exceptional conditions that produce a population that is 
not in H-W equilibrium is known as Assortative Mating. Which 
means preferential mating between like individuals. For example, 
individuals with inherited deafness have a relatively high probability 
of having children together. But even this type of assortative mating 
will only affect the genotype frequencies related to deafness. 

2) New mutations: 
Although new mutations continually arise, mutation rates are usually 
sufficiently small that in any single generation their effect on allele 
frequencies is negligible. As will be discussed in the next lecture, the 
effect of mutations compounded over many generations can have a 
significant effect on allele frequencies. 

3) Selection (differences in survival or reproduction of different 
genotypes) 

Like new mutations, the effect of selection is usually small in any 
single generation and therefore usually does not affect H-W 
equilibrium. An exception would be a recessive lethal mutation that 
would render the genotype frequency of the homozygote = 0 
regardless of the genotype frequency of the heterozygote. As will be 
discussed in the next lecture, the effect of selection can have a 
significant effect over many generations. 

4) Genetic drift/Founder effect: 
For small populations only a small number of individuals pass their 
alleles on to the next generation. Under these circumstances, chance 
fluctuations in the alleles that are transmitted can cause significant 
changes in allele frequency. These effects are usually insignificant 
for large populations such as in the U.S. 



To see how this would happen, consider a gene in a very large 
population with a single major dominant allele A and 10 minor recessive 
alleles a1, a2, a3 ...a10 with allele frequencies ƒ(a1) = ƒ(a2) = ƒ(a3) ... = 10-4 

and (ƒ(A) ≈ 1) 
Now imagine that a group of 500 individuals from this population move 
to an island starting a new population. The aggregate frequency of 
recessive alleles (an) is 10-3. Thus, only one of the recessive alleles will 
likely be in the initial 1000 alleles included in the island population. If 
the selected allele happens to be a1, the new frequencies in the island 
population will be: ƒ(a1) = 10-3 , and ƒ(a2) = ƒ(a3) = ƒ(a4) ... = 0. 
Thus in a stochastic fashion, most of the minor alleles will be lost, 
whereas an occasional rare allele will experience an increase in 
frequency. The smaller the founding population the more likely that a 
rare allele will be lost and the greater the increase in frequency 
experienced by the alleles that happen to be selected. 

5) Migration of individuals between different populations 
When individuals from populations with different allele frequencies 
mix, the combined population will be in H-W equilibrium after one 
generation of random mating. The combined population will be out of 
equilibrium to the extent that mating is assortatative. 

If we are considering rare alleles we can make the following approximations 
allowing us to avoid a lot of messy algebra in our calculations. 

For f(a) = q, and f(A) = p, 

If q << 1 then p ≈ 1 

From H-W: 

f(A/A) = p2 ≈ 1, f(A/a) = 2pq ≈ 2q, f(a/a) = q2 

Since most genetic diseases are rare, these approximations are valid for 
many of the population genetics calculations that are of medical importance. 



For example, albinism occurs in 1/20,000 individuals. Let's say that this 
condition is due to a recessive allele a of a single gene that is in H-W 
equilibrium. 

f(a/a) = 5 x 10-5 = q2 

q = 5 x 10-5  = 7 x 10-3 

f (A/a) = 2pq ≈ 2q = 1.4 x 10-2 

We will now calculate the fraction of alleles for albinism that are in 
individuals that are homozygous for albinism. 

Number of alleles in homozygotes ≈ 2 x N (q2) N = population size 

Number of alleles in heterozygotes ≈ N (2q) 

)
The ratio is: 

2 x N (q2
 = qN (2q)

Thus, for albinism (since q = 7 x 10-3) the fraction of alleles in homozygotes 
is 7 x 10-3. That is, > 99% of the alleles are in heterozygotes. 


