
Lecture 19 
EUKARYOTIC GENES AND GENOMES I 

 
 For the last several lectures we have been looking at how one can 
manipulate prokaryotic genomes and how prokaryotic genes are regulated.  In 
the next several lectures we will be considering eukaryotic genes and genomes, 
and considering how model eukaryotic organisms are used to study eukaryotic 
gene function.  During the course of the next six lectures we will think about 
genes and genomes of some commonly used model organisms, the yeast 
Saccharomyces cerevisiae and the mouse Mus musculus. But first let’s look how 
the genes and genomes of these organisms compare to E. coli at one extreme, 
and humans at the other.  
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Let’s think about the number of genes in an organism and the size of the 
organism’s genome.  The average protein is about 300 amino acids long, 
requiring 300 triplet codons, or roughly 1Kb of DNA.  Thus it makes sense that to 
encode 4,200 genes E. coli requires a genome of 5 million base pairs.  However, 
the human genome encodes about 22,500 proteins, and this should require a 
genome of lets say 25 million base pairs.  Instead, humans have a genome that 
is ~ 3000 million base pairs, or ~ 3,000 Mb, i.e., ~ 3 billion base pairs.  In other 
words, there is about 100-fold more DNA in the human genome than is required 
for encoding 22,500 proteins.  What is it all doing?  Some of it constitutes 
promoters upstream of each gene, some is structural DNA around centromeres 



and telomeres (the end of chromosomes, some is simply intergenic regions (non-
coding regions between genes) but much of it is present as introns. 
 
 What does it mean “Genes Have Introns”.  This represents one of the 
fundamental organizational differences between prokaryotic and eukaryotic 
genes.  Eukaryotic genes turn out to be interrupted with long DNA sequences 
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The DNA segments that 
are ultimately expressed 
as protein, i.e., the DNA 
sequence that contains 
triplet codon information, 
are called exons.  The 
intronic sequences are 
removed from the primary 
transcript by splicing. 
 
 

A major consequence of this arrangement is the potential for alternative 
splicing to produce different proteins species from the same gene and primary 
transcript.  This gives the potential for tremendous amplification of the 
complexity of mammals (and other eukaryotes) through many more thousands 
of possible proteins.  
Note that lower eukaryotes such as the yeast S. cerevisiae only have ~ 5% of 
their genes interrupted by introns, but for multicellular organisms, like humans, 
>90% of all genes are interrupted by anywhere between 2 and 60 introns, but 
most genes have between 5 and 12 introns.  
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Gene Regulation in Yeast 
 
In the next few lectures we will consider how eukaryotic genes and genomes can 
be manipulated and studied, and we will begin with an example of examining 
how genes are regulated in S. cerevisiae.   First, let’s figure out how to use some 
neat genetics to identify some regulated genes, and in the next lecture we will 
figure out how one can use genetics to dissect the mechanism of that regulation. 
 
Characterizing function and regulation of S. cerevisiae genes: We are 
going to combine a few neat genetic tools that you learned about in Prof. Kaiser’s 
lectures for this, namely a library of yeast genomic fragments cloned into a 
bacterial plasmid, a modified transposon (mini-Tn7), and the lacZ gene 
embedded within the transposon.  In this experiment the lacZ gene is going to 
be used as a reporter for transcriptional activity of yeast genes. 
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The mini-Tn7 is introduced into a 
population of E.coli that harbor a 
plasmid library of the S. cerevisiae 
genome; i.e., each E. coli cell is home 
to a plasmid that contains a different 
segment of the S. cerevisiae genome, 
such that the whole geneome is 
represented many times over in this 
population of E. coli.  The mini-Tn7 is 
allowed to transpose by integrating into 
either the plasmid DNA or the bacterial 

NA; the original DNA that carries the D
mini-Tn7 can not replicate, but cells that have integrated the mini-Tn7 into t
plasmid or E. coli chromosome are selected as Tetracycline resistant colonies.  
Plasmid DNA is purified from these transformants and retransformed into 
tetracycline sensitive E. coli; the resulting tetracycline resistant bacteria harbor 
only plasmids that have an integrated mini-Tn7 transposon.  Plasmid is isolated 



from these cells and the yeast genomic fragments are isolated by digestion with
an appropriate restriction enzyme. 
 
So now we have a library of yeast genomic fragments each of which has the 
transposon inserted; these genomic fragments can be transformed into S. 
cerevisiae cells that are ura3-.  Each Ura+ transformant colony will have 
recombined a Tn7 transposon-containing genomic DNA into its genome.  This 
essentially gives us a library of yeast with transposons randomly 
integrated into it g
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Yeast cells expressing β-galactosidase 
activity can easily be detected by growth 
in the presence of 5-bromo-4-chloro-
3-indolyl-beta-D-galactopyranoside, 
better known as X-gal.  LacZ cleaves X-
gal to release a chemical moiety that has 
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how regulation is achieved.  This is the topic of the next lecture. 
 
 


