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6.581/20.482J Problem Set #6, Image Processing Part 1 

Due: Thursday, May 18, 2006, at 5 PM 

1.	 Recovering Data from a Noisy Image. The imaging system blurs the object data and adds noise, so our image 
capture setup receives the signal 

g = H f 0 +w (1) 

where f 0 is the original object data, H is the point spread function, w is the added noise, and g is the captured 
image data. In this problem, we will explore the use of the singular value decomposition (SVD) to recover as 
much of the original signal f 0 as possible without unduly amplifying the noise w. 

(a) Run the script load data.m to initialize the object data f , PSF h, and random white noise w. Recall 
from class that h is symmetric about h[0] and defined to be periodic with length n such that h[n − 1] = h[1], 
h[n − 2] = h[2], etc. Generate the circulant matrix H and calculate g. 

(b) Take the SVD of H and plot the first several columns of U and V . Explain what you see. 

(c) Plot the singular values of H and observe that they appear in pairs. All circulant matrices exhibit this 
characteristic—why? 

(d) Blindly deconvolve the resulting image data such that 

f = H−1g	 (2) 

and plot the result. As expected, the deconvolution amplifies the noise and drowns out the original object 
data. Computing the SVD of H gives us 

H = U ΣV T (3) 
H−1 = V Σ−1UT (4) 

where Σ is a diagonal matrix such that Σi,i describes the quantity of stretching that H performs when 
mapping from the input basis vector Vi to the output basis vector Ui. If Σi,i is very small, inverting H 
amplifies the component associated with Ui. Use partial inv.m to only invert those directions of H 
that are associated with large singular values Σi,i. Try setting the threshold to different values and plot the 
resulting deblurred data. What threshold is optimal for recovering the original function? 

(e) Generate two or three other signals of your choosing. Blur and add noise to these signals as you did in part 
a.). Use the optimal threshold in part b.) to recover the original signals. Now vary the threshold—is your 
answer from part b.) still the best? 

2.	 Modeling Discontinuities. In class, we chose to use a Fourier representation of our image data. This problem 
explores one of the consequences of that choice of representation: discontinuities in the image data suffer from 
what is called the Gibbs phenomenon. 

(a) Take the boxcar function x from load data.m and find its Fourier transform X via fft. Truncate the 
Fourier representation at k = 10, 20, 40, where k is the number of nonzero Fourier coefficients. Plot the 
inverse transforms. Note that truncating requires a bit of care (this is not as straightforward as forming 
a low rank matrix via the SVD). The resulting signals should overshoot the original discontinuity. What 
changes as you increase k? What doesn’t change? 

(b) Now let’s use the object data	 f from Problem 1. Transform this smoothed boxcar function, and truncate 
its representation for the same values of k as in part a.) When you inverse transform these truncated 
representations, what do you see? 

(c) If capturing sharp edges is important, a wavelet­like representation of the data might be more appropriate. 
Load the wavelet basis Q from loadWaveletBasis.m. Project the signals x and x f into this basis, and 
truncate the representation at k = k1, k2, k3 so that 

x(k) = Q(:, 1 : k)∗ Q(:, 1 : k)T ∗ x.	 (5) 

How do the functions change if we represent them using truncated wavelet expansions? Plot your results 
and comment on possible scenarios in which wavelet representation may be advantageous, and others in 
which the Fourier representation has the edge. 
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3.	 Two­Dimensional Image Processing. In this problem, you will explore various ways of doing a two­dimensional 
convolution between an object and a point spread function (PSF). 

(a) Figure 1 shows a simple object and its image under convolution with a PSF. The non­zeros entries of both 
matrices (as shown in non­black pixels) are: ⎡ ⎤1 1 

4 4
1 1⎢⎢⎣ 

⎥⎥⎦ 
1 1 
1 1 

1 14 4and 11	 1 1 44 
1 1 
4 4 

respectively. Can you infer what the PSF is? Verify it in MATLAB with 

abs(ifft2(fft2(Mob j).*fft2(Mps f ))) 

where each matrix contains corresponding 8x8 pixel values. 

Figure 1: Object and image in 8x8 pixels 

(b) The two­dimensional convolution between an object and a PSF can be written in matrix form: ⎡ ⎡⎤ ⎡⎤ ⎤H(0, :) H(n− 1, :) . . . . . . H(1, :) f o(1,1) g(1,1)⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

= 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

. . . . 
f o(1,n) 

. . . 

. . 

. . . 
g(1,n) 

. . . 

. . 

H(1, :) H(0, :) . . 
. .H(2, :) H(1, :) . 

. . . 
. ..H(2, :) . . . 

. .. . . ... 
H(n − 1, :)	 H(0, :) f o(n,n) g(n,n) 

where f o(i, j) and g(i, j) are object and image data in pixel (i, j). The matrix is ”doubly circulant” as each 
block entry itself is also a circulant matrix ⎡ ⎤

h(k,0) h(k,n − 1) . . . . . . h(k,1) 

h(k,1) h(k,0) 
. . . 

h(k,2) h(k,1) 
. . . 

. . . h(k,2) 
. . . . . . 

. . . 
. . . 

h(k,n − 1) h(k,0) 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

H(k, :) = 

whose entries are from kth row of a two­dimensional PSF. Construct the matrix with the PSF you find in 
part (a), and verify that you get the same image data as before by matrix multiplication. 

(c) Multiplication by a circulant matrix H(k, :) can be efficiently computed with a one­dimensional FFT. In 
MATLAB notation: 

H(k,:)*f = ifft(fft(h(k,:)).*fft(f)) 

Implement two­dimensional convolution with one­dimensional FFTs, and verify that you get the same 
image data as before. 
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(d) Download mandrill.bmp from course web site, and use your one­dimensional FFT implementation to 
get its convolution with the PSF. You should get a similar picture as shown in figure 2. You may have 
noticed that it appears brighter than the original image which is physically non­realistic. Normalize the 
PSF so that it does not amplify the energy of an input signal. Redo the simulation and comment on the 
difference between the original data and the convolved one. 

Figure 2: Image of a mandrill and its convolution with a PSF 
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