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6.581/20.482J Problem Set #3 

Due: 5 PM Thursday 3/30/06 

In this problem set, you will design ligand charges to minimize the binding free energy of the ligand­receptor 
system shown in Figure 1. This is a highly fictitious molecule. (Don’t worry about how the ligand gets into 
the receptor!) You will need to download the MATLAB scripts available on the MIT server. The script 
loadComplex.m contains the charge locations for these problems. 

Figure 1: Ligand and receptor combine into a spherical complex 

1.	 Ligand­Receptor Coulombic Interactions. 

Please recall that in order to make a binding event more favorable, one wishes to maximize the change in 
free energy (make it as negative as possible). This change in free energy has three components: the ligand 
desolvation penalty, the intermolecular interaction, and receptor desolvation penalty: 

T T TΔG = qL LqL +2qLCqR +qRRqR.	 (1) 

The binding energy is the difference between the energy of the bound state (shown in Figure 1) and the 
energy of the unbound state, where the receptor is assumed to be infinitely far away from the ligand. For 
this question, you will consider the case of a homogeneous background medium and you will assume that 
all receptor charges have value 1, and that all ligand charges have the same value q. As you will discover 
in the first part, you will only need to consider the Coulombic interaction between the bound ligand and 
receptor. 

(a) When the background media is homogeneous, the change in free energy, ΔG,has no terms of the form 
T TqL LqL or qRRqR. Please explain why (hint: consider the bound and unbound cases, which of the three 

energy terms change?) 

(b) Calculate the intermolecular interaction matrix C where 

1 
(2)Ci j = 

8πε0 �rLi −�rRj 

. 
|| || 

T(c) Plot the Coulombic energy of the system 2qLCqR versus q. 

(d) Now assume the homogeneous background is water, in which case ε = 80ε0. How will the calculated 
TΔG change? To make your comparison, please plot the Coulombic energy of the system 2qLCqR 

versus q. 
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(e) How will the predicted ΔG change if the homogeneous background is a solvent with mobile ions, in 
which case the matrix elements are given by 

�rLi −�rRe−k|| j || 
(3)Ci j = 

8πε0 �rLi −�rRj 

. 
|| || 

Use k = 3 and ε = 80ε0 to calculate the energy. To make your comparisons, please plot energy 
variation with respect to q for all 3 media in the same figure. 

2.	 Ligand­Receptor Electrostatic Optimization. In this problem you will consider a more physically accu­
rate model in which the background medium is inhomogeneous: molecular interiors have small ε and the 
solvent has large ε and mobile ions. In this model, the desolvation penalty terms return. You will use some 
provided scripts to compute the L matrix in equation (1) and carry out the charge optimization problem for 
the ligand­receptor complex in Figure 1. 

(a) To calculate L, we must calculate the change in reaction potentials at the ligand charge locations 
between the bound state and the unbound state. For instance, the ith column of L is equal to 

Li = φb(ei)− φu(ei)	 (4) 

where ei means that we have set all the ligand charges to zero except the ith , which is set to 1, and 
φb(ei) denotes the reaction potential at the charge locations in the bound state due to the single unit 
charge. Use the provided script computeReactionPotential.m to compute the L matrix. 

(b) Since equation (1) is a quadratic function, its optimal solution can be computed by solving a linear 
system: 

LqL +CqR = 0. (5) 

Compute the optimal ligand charge magnitudes for the given receptor charges using 

opt q = −L−1CqR.	 (6)L 

(c) Theoretically, the matrix L should be symmetric and positive definite. Is it? Characterize its deviation 
from these conditions. 

3.	 Long­range electrostatic interactions II. In problem set #2, we used an eigendecomposition to look at 
rank­reduction of long­range electrostatic interactions in a symmetric system. In this problem, we will 
consider the more general case of two independent, non­symmetric clusters of charge. Details on the SVD 
decomposition may be found on the course website. 

(a) Generate P, as described in problem set #2, question 2 using estatic svd.m. Use MATLAB’s 
svd function to decompose P into the matrices U and V , and the diagonal matrix S of the singular 
values. Check that: 

P = USVT	 (7) 

and that the columns of both U and V are orthonormal (in other words, U and V are unitary). Look at 
the entries of S when the separation distance is small and when the separation distance becomes very 
large. How does the spectrum of singular values change? 

(b) As in the case of the eigendecomposition, we can eliminate the vectors corresponding to small magni­
tude singular values in order to create a rank­reduced representation of the interaction matrix. In this 
case, our low­rank approximation to Pq (P̂q) is: 

Pq ≈ P̂q = ÛŜV̂Tq	 (8) 

where Û and V̂ denotes the vectors corresponding to the largest k singular values and Ŝ is the k by k 
matrix of those singular values. Calculate P̂for k = {1,2,8}. 

(c) Vary the separation between the molecules and plot the relative errors Pq as the separation ||Pq − ˆ ||
increases. 
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