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Discrete conformational search 

Consider a system with N variable residues, each of which has Mi possible conformations. We can 
denote any single configuration of the system by the set {m} = {m1, m2, ..., mN}, where each mi is the 
conformation adopted by residue i. The energy of any given configuration can be computed by: 

N � N� N−1 � 
E = Eself Epair (1)+mi mi,mj{m} 

i=1 i=1 j=i+1 

The energy terms can be computed in many ways, but are provided as a given in this problem. In 
this problem you will explore the configuration space of a system with 5 variable positions, each of which 
may adopt 306 possible conformations. The file pair.dat is a plain text, tab­delimited file, containing 
the energies as a matrix of the following form: 

Eself Epair Epair Epair 
1 1,2 1,3 1,N· · · 

Eself Epair Epair 0 2 2,3 2,N· · · 
Eself Epair 0 0 3 3,N (2)· · · 

. . . . . . . . . . . . . . . 
Eself0 0 0 N· · · 

where each sub­matrix Eself is an Mi × Mi matrix of the form: i 

Eself 0 0 01m
i 

· · · 
Eself0 0 02m

i 
· · · 

Eself 0 0 0 (3)3m
i 

· · · 
. . . . . . . . . . . . . . . 

Eself0 0 0 Mim 
· · · 

i 

and each sub­matrix Epair is an Mi × Mj matrix of the form: i,j 
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Note that two additional files are provided pair­tiny.dat and pair­small.dat. The former desribes 
a system of 3 residues, each with 135 possible conformations; the latter a system of 4 residues with 216 
possible conformations. The tiny file may be useful in debugging your code. The small file can be used if 
you are working on a small computer with not much memory and are unable to use the plain pair.dat, 
but we would rather you not take this route. 

1. How many operations are required to evaluate the energy of a single configuration, given that the 
set of Eself and Epair are precalculated. Calculate the total number of possible configurations of 
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this system. How many operations would be required to find the global minimum configuration 
through enumeration of configurational states. 

2. The dead­end elimination (DEE) algorithm provides a powerful tool for reducing the complexity 
of this discrete search. In its simplest form, the DEE algorithm involves two statements of “elim­
inating power”. The first applies to individual residue conformations, and the second to pairs of 
residue conformations. 

sSingles elimination criterion: A given conformation mi for position i can not be present in the 
global mimimum solution if: 

N N

(Epair 
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) (5)u
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t
j

simultaneously be present in the global mimimum solution if: 

s
i 

j=1 j=1 

for any conformation t =� s at position i (i = j). 
s tPairs elimination criterion: A given pair of conformations mi ,mj for positions i and j can not 
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for any pair of conformations u =� s and v = t at positions i and j (i = j). 

The general implementation of the DEE algorithm applies these criteria iteratively: 

for i=1:iterations

eliminate singles

eliminate pairs


end 

with the number of single residues, and of pairs of residues, decreasing with each iteration. The 
number of iterations may be set to a fixed value, or may be implemented as a while loop, continuing 
until no more singles or pairs are eliminated. 

Implement the DEE algorithm in matlab or any programming language of your choice. Plot the 
number of possible conformations as a function of iteration number. How many iterations are 
required to make enumeration of the remaining conformations feasible? Perform this enumeration 
to find the global energy minimum configuration. 

3. An alternative approach to the conformational search problem is the mean­field approach. In this 
method, all conformational states of every residue are considered simultaneously, with a proba­
bilistic description of the relative populations of each state. In this model, the energy of the system 
is given by: 

N Mi � Mi N Mj� � N−1 � � � 
j)E

pair 
s
i

i )E
self 
m

t(P (m s) + (P (mi )P (m ) (7)sEeff = t
j

m ,m
i=1 s=1 i=1 s=1 j=i+1 t=1 

swhere P (mi ) is the probability of residue i being found in conformation s. 

The key goal of the algorithm is to obtain a set of probabilities that accurately describes the low 
energy configurations of the system. One method to do this is using a self­consistent approach 
(known as self­consistent mean­field, SCMF) — first assigning an initial probability distribution, 
then using this starting point to iteratively refine the probabilities until some level of convergence 
is reached. The update of each probablity is achieved using the relation: 
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−E(m s
i
) 

kT esP (mi ) = 
−E(m�Mi 

(8)t
i
) 

kT 
t=1 e


s s
where E(mi ) is the energy of conformation s of residue i (mi ) in the “mean­field” of all confor­
mations at other residues. This is given by: 

N Mj

sE(mi ) = Eself 
ms
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+ s
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j)E

pair t(P (m ) (9)t
j

m ,m
j=1 t=1 

Note that the energies provided are in kcal/mol, T should be in degrees Kelvin (K), and thus the

Boltzmann constant k = 1.987 × 10−3 kcal/(mol·K).


Given these equations, we write the self­consistent mean­field algorithm as follows:


select initial probabilites 
for i=1:iterations


compute mean­field energies for each m(i,s)

compute probability distribution


end 

Implement the self­consistent mean­field approach and solve for the probability distribution, and 
sits associated energy. Use a uniform probability density (P (mi ) = 1/Mi) as an initial guess, and a 

temperature of 298 K. How do your results change if you use a temperature of 100 K or of 1000 K 
(plot the distribution for each temperature)? 

4. Only at very low temperatures will SCMF give a unique configuration, comparable to the result 
from DEE. Refine your results from the run with T = 298 K by succesively reducing the tempera­
ture, using the final probabilities from the previous run as initial conditions. Use the temperature 
set {298, 100, 10, 1} K. Plot the distribution after each stage, and compare the final result to the 
answer from DEE. 

Comments 

1. As this assignment requires fair amount of programming, I would highly recommend people with 
less programming experience to start working on problems early. You can code in matlab or 
your favourite programming language. Please note that due to matlab loop overhead, a matlab 
implementation of Dead End Elimination algorithm (on a small dataset) may take hours to run, 
whereas a C++ implementation would run in seconds. On the other hand, it is very convenient 
to perform matrix manipulations with matlab. If you do decide to go ahead with matlab, it’ll be 
fine to answer the questions using the smaller dataset. 

2. You will submit all your work via MIT server . Please tar and zip your files. I would highly 
recommend you to include a simple README, which clearly describes each file in your directory. 
It is a lot easier for us to grade your assignment if you document your code, and use meaningful 
variable and function names. 
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