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Polyelectrolyte hydrogels

 
Last Day:   Physical hydrogels 

Structure and physical chemistry 
 
  
Today:    polyelectrolyte hydrogels, complexes, and coacervates  

Polyelectrolyte multilayers  
theory of swelling in ionic hydrogels 

      
 
Reading: S.K. De et al., ‘Equilibrium swelling and kinetics of pH-responsive hydrogels: Models, 

experiments, and simulations,’ J. Microelectromech. Sys. 11(5) 544 (2002). 
 
Supplementary Reading: L. Brannon-Peppas and N.A. Peppas, ‘Equilibrium swelling behavior of pH-sensitive 

hydrogels,’ Chem. Eng. Sci. 46(3) 715-722 (1991). 

ANNOUNCEMENTS:
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Determination of thermodynamic driving force 
for triblock self-assembly

Image removed due to copyright reasons.
Please see:

Figure 6 and Table 4 in Alexandridis, P., J. F. Holzwarth, and T. A.  Hatton. Macromolecules 27 
(1994): 2414-2425.
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Determination of thermodynamic driving force 
for triblock self-assembly
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Hydrophobic association vs. hydrogen bonding 
gels
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Polyelectrolyte hydrogels
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Common polyelectrolyte gel structures:
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Formation of polyelectrolyte physical gels: 
self-assembly of coacervate hydrogelsCOACERVATESCOACERVATES

Images removed due to copyright reasons:
Please see:

Chornet, E., and S. Dumitriu. “Inclusion and Release of Proteins from Polysaccharide-based Polyion
Complexes.” Adv Drug Deliv Rev 31 (1998): 223-246. 
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Microstructure of coacervate hydrogels

Xanthan
polyanion

Chitosan
polycation

COACERVATESCOACERVATES

Images removed due to copyright reasons.
Please see:

Chornet, E., and S. Dumitriu. “Inclusion and Release of Proteins from 
Polysaccharide-based Polyion Complexes.” Adv Drug Deliv Rev 31 (1998): 223-246.
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Microstructure of coacervate hydrogelsCOACERVATESCOACERVATES

Images removed due to copyright reasons.
Please see:

Chornet, E., and S. Dumitriu. “Inclusion and Release of Proteins from 
Polysaccharide-based Polyion Complexes.” Adv Drug Deliv Rev 31(1998): 223-246.

Images removed due to copyright reasons.
Please see: 

Friedl, P. et al. Eur J. Immunol 28 (1998): 2331-2343.



1/21/03 Lecture 9 Spring 2006 10

PEMsPEMs Layer-by-layer deposition

Surface properties dominated by last layer deposited:

Image removed due to copyright reasons:
Please see:

Figure 1 in Schlenoff, Joseph B. "Polyelectrolyte Multilayers.“
AccessScience@McGraw-Hill. 
http://www.accessscience.com

θ

Figure by MIT OCW.
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Degree of ionization during assembly dictates 
multilayer structurePEMsPEMs

Charge during assembly 
can be ‘protected’ in the 
multilayer:

Images removed due to copyright reasons.
Please see:

Figure 1 in Mendelsohn, Jonas D., Sung Yun Yang, Jeri'Ann Hiller, Allon I. Hochbaum, and Michael 
F. Rubner. "Rational Design of Cytophilic and Cytophobic Polyelectrolyte Multilayer Thin Films." 
Biomacromolecules 4 (2003): 96-106.
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Assembly with any charged molecule or particle; 
Conformal modification of complex surfacesPEMsPEMs

Images removed due to copyright reasons. 

Please see:
Khopade, A. J., and F. Caruso. “Stepwise Self-assembled Poly(amidoamine) Dendrimer and 
Poly(styrenesulfonate) Microcapsules as Sustained Delivery Vehicles.” Biomacromolecules 3 (2002): 1154-1162.
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PEMsPEMs Conformal modification of complex surfaces

Image removed due to copyright reasons. 
Please see:

Caruso, F., D. Trau, H. Mohwald, and R. Renneberg. “Enzyme Encapsulation in Layer-by-layer Engineered 
Polymer multilayer capsules.” Langmuir 16 (2000): 1485-1488.
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PEMsPEMs Hollow PEMs as drug-delivery capsules

Image removed due to copyright restrictions. Graph removed due to copyright restrictions.

Fluorescent drug-loaded PEM capsules
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PEMsPEMs Cellular substrates

Image of SEM micrograph of 
multilayer-coated echinocyte
blood cell removed due to 
copyright restrictions.

(Alberts et al. Molecular Biology of the Cell)
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PEMsPEMs Employing PEMs on degradable biomaterials

  CH3 O    
-(CH -C-O)n-
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Images removed due to copyright reasons.
Please see:

Zhu, Y., C. Gao, T. He, X. Liu, and J. Shen. 
“Layer-by-Layer Assembly to Modify Poly(L-
lactic acid) Surface Toward Improving Its 
Cytocompatibility to Human Endothelial Cells.”
Biomacromol. 4 (2003): 446-452.
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Polyelectrolyte hydrogels

ionization of charged groups
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Responsiveness of ‘unpaired’ polyelectrolyte gel 
structures:

pH Ionic strength
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Environmental responsiveness of covalent 
polyelectrolyte networks: experimentally observed 

swelling of anionic hydrogels

[-CH-CH-]m-
C=O
O
H

Graph removed due to copyright reasons. 
Please see:

De, S. K. et al. “Equilibrium Swelling and Kinetics of pH-responsive Hydrogels: Models, Experiments, and 
Simulations.” Journal of Microelectromechanical Systems 11 (2002): 544-555.
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Driving force for unpaired polyelectrolyte gel swelling
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Swelling behavior reversed in polycation hydrogels

pH

S
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Kinetics of swelling/deswelling transitions

Graphs removed due to copyright reasons.
Please see:

De, S. K. et al. “Equilibrium Swelling and Kinetics of pH-responsive Hydrogels: Models, Experiments, and 
Simulations.” Journal of Microelectromechanical Systems 11 (2002): 544-555.
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Kinetics of swelling/deswelling transitions

Rapid swelling/deswelling of superporous gels:

Low pH High pH

Graph removed due to copyright reasons. 
Please see: 

Figure 2 in Zhao, B., and J. S. Moore. “Fast pH-
and Ionic Strength-responsive Hydrogels in 
Microchannels.” Langmuir 17(2001): 4758-4763.
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thermodynamics of ionic hydrogels
Model of system:

Inorganic anion, e.g. Cl-

Inorganic cation, e.g. Na+
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Swelling of polyelectrolyte gels is controlled by ionic 
strength and degree of ionization of the gel:
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Equilibrium condition:
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Q = swollen volume of system/dry polymer volume = 1/ φ2,s

After Brannonpeppas, L., and N. A. Peppas. 
“Equilibrium Swelling Behavior of Ph-Sensitive 
Hydrogels.” Chemical Engineering Science 46 (1991): 
715-722.

Theoretical Swelling Predictions 
at Comparable Ionic Strength Conditions 

for an Anionic Network 
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Figure by MIT OCW.
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PE hydrogels as environment-responsive 
materials: applications in biotechnology and 

bioengineering
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bioMEMS based on polyeletrolyte gel 
responses

Images removed due to copyright reasons. 
Please see:

Figure 1 and Figure 2 in Beebe, D. J., et al. “Functional Hydrogel Structures for Autonomous Flow 
Control Inside Microfluidic Channels.” Nature 404 (2000): 588-+.
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bioMEMS based on polyeletrolyte gel 
responses

Image removed due to copyright reasons. 
Please see:

Figure 12 in Beebe, D. J., G. A. Mensing, and G. M. 
Walker. “Physics and Applications of Microfluidics in 
Biology.” Annual Review of Biomedical Engineering
4 (2002): 261-286.

Image removed due to copyright restrictions.
Please see:

Figure 4 in Beebe, D. J., et al. “Functional Hydrogel
Structures for Autonomous Flow Control Inside 
Microfluidic Channels.” Nature 404 (2000): 588-+.
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