Polyelectrolyte hydrogels

Last Day: Physical hydrogels
Structure and physical chemistry

Today: polyelectrolyte hydrogels, complexes, and coacervates
Polyelectrolyte multilayers
theory of swelling in ionic hydrogels

Reading: S.K. De et al., ‘Equilibrium swelling and kinetics of pH-responsive hydrogels: Models,
experiments, and simulations,” J. Microelectromech. Sys. 11(5) 544 (2002).

Supplementary Reading: HAND e on EELM\OM&\.\\P 3?“}0%’?,)\) zé AND D
(NN O MM NOT GeT D TWs TopAy )

s = Due T8 Spm /PSY o= o

ANNOUNCEMENTS:

1/21/03 Lecture 9 Spring 2006 1



Determination of thermodynamic driving force
for triblock self-assembly
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Image removed due to copyright reasons.
Please see:
Figure 6 and Table 4 in Alexandridis, P., J. F. Holzwarth, and T. A. Hatton. Macromolecules 27
(1994): 2414-2425.
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Determination of thermodynamic driving force
for triblock self-assembly
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Hydrophobic association vs. hydrogen bonding
gels
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Polyelectrolyte hydrogels
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Common polyelectrolyte gel structures:
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COACERVATES Formation of polyelectrolyte physical gels:
self-assembly of coacervate hydrogels

Images removed due to copyright reasons:
Please see:
Chornet, E., and S. Dumitriu. “Inclusion and Release of Proteins from Polysaccharide-based Polyion
Complexes.” Adv Drug Deliv Rev 31 (1998): 223-246.
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COACERVATES | Microstructure of coacervate hydrogels
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Images removed due to copyright reasons.
Please see:
Chornet, E., and S. Dumitriu, S. “Inclusion and Release of Proteins from
Polysaccharide-based Polyion Complexes.” Adv Drug Deliv Rev 31 (1998): 223-246.

1/21/03 Lecture 9 Spring 2006 8



COACERVATES | Microstructure of coacervate hydrogels

Images removed due to copyright reasons.
Please see:
Chornet, E., and S. Dumitriu. “Inclusion and Release of Proteins from
Polysaccharide-based Polyion Complexes.” Adv Drug Deliv Rev 31 (1998): 223-246.

Images removed due to copyright reasons.
Please see:
Friedl, P. et al. Eur J. Immunol 28 (1998): 2331-2343.
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PEMs Layer-by-layer deposition
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Image removed due to copyright reasons: 0 T T T . T
Please see: 7| i

76 | —

Figure 1 in Schlenoff, Joseph B."Polyelectrolyte Multilayers."
AccessScience@McGraw-Hill. http://www.accessscience.com
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Advancing contact angle as a function of the layer number of
PSS and chitosan. Odd numbers represent films with PSS as
the outermost layer, whereas even number films have chitosan
as the outermost layer.

Figure by MIT OCW.
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PEMS Degree of ionization during assembly dictates

multilayer structure .
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Images removed due to copyright reasons.
Please see:
Figure 1 in Mendelsohn, Jonas D., Sung Yun Yang, Jeri'‘Ann Hiller, Allon I. Hochbaum, and Michael
F. Rubner. "Rational Design of Cytophilic and Cytophobic Polyelectrolyte Multilayer Thin Films."
Biomacromolecules 4 (2003): 96-106.
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PEMs Assembly with any charged molecule or particle;
Conformal modification of complex surfaces

Images removed due to copyright reasons.
Please see:
Khopade, A. J., and F. Caruso. “Stepwise Self-assembled Poly(amidoamine) Dendrimer and
and poly(styrenesulfonate) microcapsules as sustained delivery vehicles. Biomacromolecules 3, (2002): 1154-1162.
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PEMs Conformal modification of complex surfaces

Image removed due to copyright reasons.
Please see:
Caruso, F., D. Trau, H. Mohwald, and R. Renneberg. “Enzyme Encapsulation in Layer-by-layer Engineered
Polymer multilayer capsules.” Langmuir 16 (2000): 1485-1488.

1/21/03 Lecture 9 Spring 2006 13



PEMs | Hollow PEMs as drug-delivery capsules

Image removed due to copyright restrictions. Graph removed due to copyright restrictions.

Fluorescent drug-loaded PEM capsules
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PEMSs

Image of SEM micrograph of
multilayer-coated echinocyte
blood cell removed due to
copyright restrictions.
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Cellular substrates
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Figure 10-41 Simplified diagnm of
the cell coat (glycocalyx). Thecell
coat is made up of the oligosaccharide
side chains of glycolipids and ntegral
membrane glycoproteins and he
polysaccharide chains on integral
membrane proteoglycans. In
addition, adsorbed glycoprotens and
adsorbed proteoglycans (not siown)
contribute to the glycocalyx inmany
cells, Note that all of the carbohydrate
is on the noncytoplasmic surfece of
the membrane.

(Alberts et al. Molecular Biology of the Cell)
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Images removed due to copyright reasons.
Please see:
Zhu, Y., C. Gao, T. He, X. Liu, and J. Shen.
“Layer-by-Layer Assembly to Modify Poly(L-
lactic acid) Surface Toward Improving Its
Cytocompatibility to Human Endothelial Cells.”
Biomacromol. 4 (2003): 446-452.
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Polyelectrolyte hydrogels
UNPARED  TOBLECTIROLTTE S
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Responsiveness of ‘unpaired’ polyelectrolyte gel
structures:

/" pH V/ lonic strength
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Environmental responsiveness of covalent
polyelectrolyte networks: experimentally observed
swelling of anionic hydrogels

Data for poly(HEMA-co-AA) covalent hydrogel:
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Graph removed due to copyright reasons.
Please see:
De, S. K. et al. “Equilibrium Swelling and Kinetics of pH-responsive Hydrogels: Models, Experiments, and
Simulations.” Journal of Microelectromechanical Systems 11 (2002): 544-555.
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Driving force for unpaired polyelectrolyte gel swelling
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Swelling behavior reversed In polycation hydrogels
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Kinetics of swelling/deswelling transitions

Graphs removed due to copyright reasons.
Please see:
De, S. K. et al. “Equilibrium Swelling and Kinetics of pH-responsive Hydrogels: Models, Experiments, and
Simulations.” Journal of Microelectromechanical Systems 11 (2002): 544-555.
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Kinetics of swelling/deswelling transitions

Rapid swelling/deswelling of superporous gels:

Low pH High pH
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Graph removed due to copyright reasons.
Please see:
Figure 2 in Zhao, B., and J. S. Moore. “Fast pH-
and lonic Strength-responsive Hydrogels in
Microchannels.” Langmuir 17(2001): 4758-4763.
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external solution

gel

thermodynamics of ionic hydrogels
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Swelling of polyelectrolyte gels is controlled by ionic

strength and degree of ionization of the gel:
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Equilibrium condition:
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Q — swollen volume of system/dry polymer volume = 1/ (|)2 S
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After Brannonpeppas, L., and N. A. Peppas. Figure by MIT OCW.

“Equilibrium Swelling Behavior of Ph-Sensitive
Hydrogels.” Chemical Engineering Science 46 (1991):
715-722.
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PE hydrogels as environment-responsive
materials: applications in biotechnology and
bioengineering
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biIoMEMS based on polyeletrolyte gel
responses

Images removed due to copyright reasons.
Please see:
Figure 1 and Figure 2 in Beebe, D. J., et al. “Functional Hydrogel Structures for Autonomous Flow
Control Inside Microfluidic Channels.” Nature 404 (2000): 588-+.
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biIoMEMS based on polyeletrolyte gel

responses
Image removed due to copyright reasons. Image removed due to copyright restrictions.
Please see: Please see:
Figure 1? in Beebe, D. J., G. A. Mensing, and G. M. Figure 4 in Beebe, D. J., et al. “Functional Hydrogel
Walker. "Physics and Applications of Microfluidics in Structures for Autonomous Flow Control Inside
Biology.” Annual Review of Biomedical Engineering Microfluidic Channels.” Nature 404 (2000): 588-+.

4 (2002): 261-286.
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