Hydrogel Biomaterials: Structure and
thermodynamics

Last Day: programmed/regul ated/multifactor controlled release for Announcements:

drug delivery and tissue engineering

Finish discussion of programmed release materials

Today: Structure of hydrogels, basic chemistry of covalent hydrogels
, Physical properties of hydrogels for biomedical applications
Reading: N.A. Peppas et a ., ‘ Physicochemical foundations and

structura design of hydrogels in medicine and biology,’
Annu. Rev. Biomed. Eng., 2, 9-29 (2000).
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Biodegradable programmed burst release chips

Richards-Grayson, A. C., I. S. Choi, B. M. Tyler,
P. P. Wang, H. Brem, M. J. Cima, and R. Langer.
"Multi-pulse Drug Delivery from a Resorbable
Polymeric Microchip Device." Nature Materials 2
(2003): 767-772.
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Biodegradable programmed burst release chips
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Controlled release In tissue
engineering/regenerative medicine

Nerve TE paradigms:
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Figure by MIT OCW.
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Controlled release In tissue

engineering/regenerative medicine
Skin TE paradigms:

(A) In Vitro Synthesis
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(B) In Vivo Synthesis
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Figure by MIT OCW.
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Challenge of providing blood supply to
macroscopic engineered tissues

blood vessel structure:

Endothelial cell lining /

Smooth muscle
cells

> Intima

Blood flow (supportive ECM

_ ’ layer)
Extensive cell death

in center of construct
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Case study: controlled release of multiple cytokines
from a TE scaffold to drive angiogenesis

Figure 1
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Steps in angiogenesis:
1. VEGF (vascular endothelial growth factor)
-attracts endothelial cells, induces proliferation
-induces tube formation
2. PDGF (platelet-derived growth factor)
-attracts smooth muscle cells, stabilizes new vessels

Lecture 6 Spring 2006 6



Fabricating dual-factor delivery microstructures

PDGF-containing mlcrospheres
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Fabricating dual factor-delivery microstructures

QDOO o] D

1. Fill with high-pressure CO,
2. Rapidly depressurize
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Gas nucleation by generating thermodynamic
Instabllity in polymer/gas solution
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Cumulative release (pmol)

Release of cytokines from scaffolds

VEGF release PDGF release
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In vivo experiments:
Scaffolds implanted subcutaneously (under skin) of Lewis rats

1) Compared bolus injection of free cytokines with release from scaffolds
2) Compared dual cytokine delivery from scaffolds with single factor delivery
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Il. HYDROGELS
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The structure of hydrogels
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Structure of hydrogels
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Representative monomers used for biological

applications
_ o i
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Common biomedical hydrogel components

Table removed due to copyright reasons.
Please see:
Table 1 in Peppas, N. A., Y. Huang, M. Torres-Lugo, J. H. Ward, and J. Zhang.
“Physicochemical Foundations and Structural Design of Hydrogels in Medicine and Biology.”
Annu Rev Biomed Eng 2 (2000): 9-29.
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Bonding in hydrogels

 Covalent
* lonic
 Hydrogen bonding

» Polypeptide complexation (e.g., coiled coils)

* Hydrophobic effect
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Covalent hydrogel structure

Typical covalent hydrogel synthesis:

Interpenetrating networks:
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Physical gels: example- Hydrophobic
Interactions in physical gels

afr

organic solution 3

Physical gels are formed by noncovalent
cross-links

/ Poly(ethylene glycol) (PEG)
bL/S } Hydrophilic B blocks

3 } Hydrophobic A bIOCkS\ Poly(propylene oxide) (PPO)
Poly(butylene oxide) (PBO)

Example blocks:
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Physical gels: ionically-crosslinked gels

alginate

Images removed due to copyright restrictions.
Please see:
Rees, D. "Polysaccharide Shapes and Their Interactions - Some Recent Advances." Pure Appl
Chem 53 (1981): 1-14. http://www.iupac.org/publications/pac/1981/pdf/5301x0001.pdf
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 alginate
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Key properties of hydrogels for bioengineering
applications:
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Further Reading
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