
I. ELECTRICAL SUBSYSTEM 
8 Oct 1 E-fields and transport; Maxwell’s equations 

9 Oct 3 Define electrical potential; conservation of charge; Electro-quasistatics 

10 Oct 10 
Laplacian solutions via Separation of Variables; Electric field boundary 
conditions; Ohmic transport; Charge Relaxation; Electrical migration vs. chemical 
diffusive fluxes  

IILect Date
for electric & magnetic fields

A.  ELECTRICAL SUBSYSTEM: Fundamentals & Applications 
Oct 7

Oct 13

Oct 14

Oct 19   Fundamentals and applications of EQS: MEMs; cell electroporation; EKG

11 Oct 15 Electrochemical coupling; Electrical double layers; Poisson–Boltzmann Equation 

12 Oct 17 Donnan equilibrium in tissues, gels, polyelectrolyte networks 

13 Oct 22 Charge group ionization & electro-diffusion-reaction in molecular networks 

14 Oct 24 Case study: Insulin-like growth factor-1 transport in tissues & cell-seeded gels;
IGF-1 binding to cell receptors vs. extracellular matrix; Experimental methods 

   

Oct  15

Oct 28

Nov 2

B.  ELECTRICAL SUBSYSTEM: Transport, binding, molecular interactions 

ELECTRICAL SUBSYSTEM

Oct 21

Oct 26

Transport of charged proteins into charged tissues with Donnan BCs  

; examples with electrodes;
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FFF: Complete Description of Coupled 
Transport and Biomolecular Interactions

"E.Q.S."

Navier
Stokes

Diffusion-
Reaction

C E

M

Start with Maxwell’s Equations
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FFF: Complete Description of Coupled 
Transport and Biomolecular Interactions

"E.Q.S."

Navier
Stokes

Diffusion-
Reaction

C E

M

coul mol
mol (m2•s)F Ni m2

A= JCurrent density

Faraday’s 
constant

(105)
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(1)

(2)

(3)

(4)

(Last Time): (Table 2.7, p. 63)

No magnetic 
“monopoles” 

…only dipoles

Magnetic 
Induction

charges

currents
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(1)

(2)

(3)

(4)

(Last Time): (Table 2.7, p. 63)
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EM Waves
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EM Waves

∇ [   ]

Page 44, 46

= f λ
Speed 
of light
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Demo from Last Lecture:
Electromagnetic "Standing Wave"

E HH E

~

(λ/2) = 75 cm

Power Supply:         
f = 200 MHz

f = 200 MHz;   λ = [c/f] =    λ = 1.5 m 8



Text Table 2.6

60 Hz ↔ 3,100 mile wavelength
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Chemical Subsystem: Conservation of Mass

outward 
Flux of 
solute

rate of 
increase of 

ci inside 
volume

reaction: 
generation 
of species
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No E-field Applied E

−

d

Induced polarization
(atomic/molecular)

Orientation polarization
(orientation of H2O dipoles) 

"Polarization"

+

̶
Courtesy of flikr
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Homogeneous, isotropic, nonlinear Polarization: 
(Example: E-induced orientation of water dipoles)

No E-field Applied E

E 

P 

Linear regime

"Saturation"P = dipole moment 
density
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Homogeneous, isotropic, nonlinear Polarization: 
(Example: E-induced orientation of water dipoles)

P = dipole moment density

In general, P can be:

• Non-linear

• Anisotropic (e.g., a tensor in a crystal)

• A function of frequency                          
(dipoles acting like harmonic   
oscillators in a sinusoidal E field)
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J = σE

Ohm's Law:    
(empirical)

1789-1854

Mathematician and 
experimentalist

Current Flow in 
conductors

(iR =    V)
(circuits)    

Always?
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+Vo
-

Electro-Statics:

x = 0 x = L

∇2Φ ⇒ ∂2φ ∂x2 = 0   “Laplace’s Eqn”

(Air: conductivity = 0)

Plastic:                                  
conductivity = 0
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PSet 4, P3:   “Gradient” Gel Electrophoresis

Splice solutions 
of Laplace’e Eq. 

together via 
appropriate  
Boundary 

Conditions

Φ = 0 Φ = + Vo

X = L/2 X = L

y = 0

y = d

16



FFF: Complete Description of Coupled 
Transport and Biomolecular Interactions

"E.Q.S."

Navier
Stokes

Diffusion-
Reaction

C E

M

coul mol
mol (m2•s)F Ni m2

A= JCurrent density

Faraday’s 
constant

(105)
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0
≈ 0

Quasistatic Approximation:

• E is a “Conservative Field”

• Can define an “electrical potential” φ

• E =  ̶  ∇φ

0
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(1) From EM Waves to Quasistatics (a 3-line derivation...)

For slow enough time rates of change (∂/∂t → 0), we can 
neglect the (∂µH/∂t) term in Faraday’s law and arrive at the 
quasistatic form, ∇×E ≈ 0.......Show that this quasistatic limit 
corresponds to the case where the wavelength λ of the EM 
wave is >> characteristic length L of the system (e.g., a 
tissue, cell, etc.)....use scaling analysis with Maxwell’s eqns…..

PSet 4,  Prob 1
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+Vo
-

ElectroStatics: ∇•J = -(∂ρe/∂t) ≡ 0

x = 0 x = L

E = -∇Φ = ix (Vo/L)^

Φ = Vo (1 – x/L) V=0

∇•J = 0 = ∇•σE = σ[∇•(-∇Φ)] = 0  →  ∇2Φ = 0   Laplace

∂2Φ
∂x2 = 0

(conductivity, σ)
(permittivity, ε)

(J = σE )
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+Vo
-

But: Electrolysis Reactions at Electrodes

Metal Electrodes

Really:  J = σE + diffusion + convection

E

J = σE

Gas bubbles* *

DEMO
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