
 

 
 

   

 

 
 

  

20.430/6.561/10.539/2.795
Fields, Forces, and Flows in Biological Systems
 

Fall 2015
 

Problem Set # 7 Issued: Friday  11/13/15 
Due: Friday, 5pm – 11/20/15 

Reading Assignment: FFF Textbook, Chapter 5 Sections 5.1-5.4 and 5.6 and 5.11, and 
Chapter 7 Sections 7.5.1 and 7.5.2 (Darcy’s Law) 

Turn in Problem set in dropbox to the right of elevators on the 2nd floor of Building 16. Please 
turn in Problem 1 into Box 1 and Problem 2 into Box 2. 

Problem 1: Fiber matrix permeability 

Consider the flow of liquid through a fibrous matrix such as the cytoskeleton or extracellular 
matrix. To a first approximation, this situation can be modeled as flow through a collection of 
rigid cylinders of circular cross-section (representing the macromolecular constituents of the 
extracellular matrix or the fibers of the cytoskeleton) each aligned parallel to one another, and 
surrounded by liquid with a viscosity equal to that of water (see figure). The objective of the 
problem is to obtain an estimates for the “hydraulic permeability” of this matrix. 

a. First, estimate using a scaling analysis how the drag force per unit length acting on one 
isolated fiber scales with the velocity of flow perpendicular to its axis (U), the fiber 
diameter (d) and the viscosity of the fluid (f), on the assumption that inertial effects can 
be neglected1 . 

b. Now consider a matrix comprised of identical, parallel fibers. Given that the average 
spacing between fibers is b, obtain a scaling relation for the pressure drop due to flow 
past a collection of fibers over a distance L where L >> b. (Hint: Consider a force balance 
on the fluid contained in a cube of volume L3.) 
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Left: Electron micrograph of a collagen gel (scale bar = 1 fm) (Lai and Barocas, J Biomech Engr, 2012). Right: Schematic of 
matrix cross-section. All fibers are assumed to be aligned perpendicular to the page. 

Note that the Hydraulic permeability, k, is defined by the following expression for the pressure 
gradient in a porous medium: 

u 
Vp = -

k 

1Strictly speaking, inertia cannot be neglected in this situation since the inertia of the fluid at large distances from the cylinder 
eventually become important. See e.g., Lamb, Hydrodynamics, p. 614 for a detailed account of this point. But neglecting it 
still provides a useful approximate result. 
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Problem 2: Endothelial signaling into the bloodstream 

Note: For additional info on similarity transformations, see Section 5.11 of FFF 

When tissue damage or infection occurs, adjacent endothelial cells lining blood vessels secrete 
signaling factors into the bloodstream to attract immune cells such as leukocytes, which can roll 
and extravasate into the tissue as discussed in lecture.  Consider a patch of endothelial cells 
lining a section of the vessel that is secreting signaling TNFa proteins into flowing blood.  
Assume that there is a fixed concentration, C0, of TNFa at the endothelial cell wall that is going 
into the vessel volume by diffusion. 

Further assume that the vessel flow is fully developed throughout the entire length and is driven 
by a pressure drop �P across a characteristic length L.  At z = 0 there is initially no TNFa 
diffused into the vessel. 

a)	 First, without considering the secreted molecule, conduct a momentum balance on a thin 
cylindrical shell, then apply Newton’s law of viscosity to derive the velocity distribution 
inside the cylindrical vessel (as in, do not start with Navier-Stokes!)  Hint: the starting 
momentum balance requires both convective terms from bulk fluid, and viscous terms 
from molecular motion. Once you find an expression for the general momentum balance 
you can use simplifying assumptions to get rid of insignificant terms. 
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b)	 Perform a mass balance on a differential volume element to derive a partial differential 
equation for TNFa in the vessel.  You can assume that TNFa is transported by 
convection only in the axial direction and diffusion only in the radial direction. State a 
non-dimensional parameter that allows you to justify neglecting axial diffusion. Then 
insert your velocity flow profile and state the boundary conditions and assumptions that 
would allow you to theoretically solve for C(r,z), but do not try to solve. Hint: your 
equation should be first order in z and second order in r. 

c) An important approximation we can make to simplify the system is to assume that the 
molecule diffuses rather slowly into the bloodstream, so we can approximate the 
diffusion in the radial direction as into a “semi-infinite” volume. 

i.	 Linearize the velocity profile by first transforming the r coordinate into y with (r = R-
y), then using the stated assumption. 

ii.	 Now make the same coordinate transformation with the governing equation, and 
simplify the cylindrical coordinates equation to a cartesian approximation.  (Recall in 
PS2 we simply rewrote the coordinate system, but now you can see under what 
circumstances we can do that). Rewrite the boundary conditions accordingly. Hint: 
The centerline of the cylinder is now effectively “infinitely” far from y=0. 

We note that the equation is still a PDE in two variables, but there may be hope.  We can make a 
transformation of y and z into a single “similarity” variable.  The similarity variable is chosen as 
a functional ratio between the two variables y and z, such that the behavior of the system is the 
same provided that the ratio is satisfied, regardless of the specific values of y and z. In other 
words, we want to find y = 8(z) over which the concentration of TNFa is constant.  Note that this 
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is essentially a diffusive boundary layer, analogous to the fluid boundary layer discussed in 
lecture.  The similarity variable is then T=y/8 (z). 

d)	 Use scaling to derive 8(z), the characteristic diffusive length, then use that expression to 
obtain the similarity variable T. 

e)	 Now that you have your similarity variable, transform the PDE into an ODE in terms of 
the similarity variable, with appropriate boundary conditions.  Hint: the solution will have 
the form d

2e
+ ar2 de = 0.  We have escaped the PDE! 

dr2 dr 

f)	 Solve the resulting ODE (you can use an analytical solver). 
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