
20.320 — Problem Set # 6 

October 29th, 2010 

Due on November 5th, 2010 at 11:59am. No extensions will be granted. 

General Instructions: 

1. You are expected to state all your assumptions and provide step-by-step solutions to the 
numerical problems. Unless indicated otherwise, the computational problems may be 
solved using Python/MATLAB or hand-solved showing all calculations. Both the results 
of any calculations and the corresponding code must be printed and attached to the 
solutions. For ease of grading (and in order to receive partial credit), your code must be 
well organized and thoroughly commented, with meaningful variable names. 

2. You will need to submit the solutions to each problem to a separate mail box, so please 
prepare your answers appropriately. Staples the pages for each question separately and 
make sure your name appears on each set of pages. (The problems will be sent to different 
graders, which should allow us to get the graded problem set back to you more quickly.) 

3. Submit your completed problem set to the marked box mounted on the wall of the fourth 
floor hallway between buildings 8 and 16. 

4. The problem sets are due at noon on Friday the week after they were issued. There will 
be no extensions of deadlines for any problem sets in 20.320. Late submissions will not 
be accepted. 

5. Please review the information about acceptable forms of collaboration, which was provided 
on the first day of class and follow the guidelines carefully. 

85 points + 2 EC for problem set 6.
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1 Protein engineering scaffolds 

Molecules capable of specific, high affinity binding to a molecular target are vital to targeted 
therapeutics, diagnostics and other biotechnology applications. Antibodies have been largely 
the scaffold of choice, but also have a large number of shortcomings. In this problem, we will 
explore the structure of different protein engineering scaffolds: Ankyrin repeat protein (PDB ID: 
2JAB), Affibody (PDB ID: 2B88) and 10th Fibronectin domain 3 (PDB ID: 1TTG). Structural 
data for proteins can be obtained from the Protein Data Bank (PDB): www.rcsb.org 

a) Give three disadvantages for the use of antibodies as therapeutics: 

Solution: 

• Very large size (150kDa) 

• Complex glycosylation 

• Multiple domains connected by disulfide bonds 

• Reduced diffusivity 

• Slow clearance (advantage for therapeutics, but not for imaging) 

3 points 

b) Write a Python program to parse the PDB files and extract the Φ and Ψ angles.
 

Solution: 

First, do not forget to clean the pdb file so that it corresponds to PyRosetta’s standards. 
While in coyote, use the command below: 

grep "^ATOM" 2JAB.pdb > 2JAB.nice.pdb 

Also be careful that the PDB file for Affibody (2B88) contains multiple time the same 
protein. Therefore, you need to scan from residues 1 to 58. Likewise for Ankyrin (2JAB), 
you need to scan from residues 12 to 136 which are read as 1-124 by PyRosetta. For the 
rest, see code at the end. 
4 points 

c) Residues in alpha helices have ϕ = -75°± 30°and ψ = -60 ± 15°while residues in beta-
strands have ϕ = -100°± 40°and ψ = 135 ± 45°. Given these allowed angle ranges, what 
fraction of residues are in an alpha-helical conformation? What fraction are in a beta-strand 
conformation? 
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Solution: 

Protein α helix β-strand 
Affibody 13/125 14/125 
Ankyrin repeat protein 8/53 6/53 
Fibronectin 1/94 47/94 

Ankyrin repeat protein A�body Human 10th Fibronectin Domain 3

6 points: allow for some variability depending on the chosen angle criteria.
 

d) If you were to engineer a protein with specific binding properties using these scaffolds starting 
from scratch, which regions in these proteins would you mutate? 

Solution: 

In general it is preferable to preserve the structured region because they tend to confer 
stability to the overall protein, although this is not always the taken approach. Typically 
the loops inbetween these structures are the ones targeted for mutagenesis. Take a look 
at the figure above where in red have been highlighted the mutagenized regions. 
2 points: Accept any coherent answer 

e) Extra credit: Tryptophan is one of the most commonly found residue in binding interfaces. 
What property of tryptophan makes it especially suited for this role? 

Solution: 

Very large surface contact for hydrophobic interactions. 
2 extra credits 

15 points + 2 EC overall for problem 1.
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Python code for Problem 1
 

PS6Q1.py: 

1 from rosetta import *
 
2 rosetta.init()
 
3
 

4 p1 = Pose("2B88.nice.pdb")
 
p2 = Pose("2JAB.nice.pdb")
 

6 p3 = Pose("1TTG.nice.pdb")
 
7
 

8 #for i in range(1, p1.total residue() + 1):
 
9 #print i, "phi = ", p.phi(i), "psi = ", p.psi(i)
 

11 # condition for alpha helical: 
12 # phi = -105 to -45 
13 # psi = -70 to -50 
14 # condition for beta strand 

# phi = -160 to -60 
16 # psi = 90 to 180 
17 

18 p alpha = 0 
19 p beta = 0 

for i in range(1,58+1): 
21 phi = p1.phi(i) 
22 psi = p1.psi(i) 
23 if phi > -105 and phi < -45 and psi > -75 and psi < -45: 
24 p alpha = p alpha + 1 

if phi > -160 and phi < -60 and psi > 90 and psi < 180: 
26 p beta = p beta + 1 
27 

28 p2 alpha = 0 
29 p2 beta = 0 

for i in range(1,125+1): 
31 phi = p2.phi(i) 
32 psi = p2.psi(i) 
33 if phi > -105 and phi < -45 and psi > -75 and psi < -45: 
34 p2 alpha = p2 alpha + 1 

if phi > -160 and phi < -60 and psi > 90 and psi < 180: 
36 p2 beta = p2 beta + 1 
37 

38 p3 alpha = 0 
39 p3 beta = 0 

for i in range(1,p3.total residue()+1): 
41 phi = p3.phi(i) 
42 psi = p3.psi(i) 
43 if phi > -105 and phi < -45 and psi > -75 and psi < -45: 
44 p3 alpha = p3 alpha + 1 

if phi > -160 and phi < -60 and psi > 90 and psi < 180: 
46 p3 beta = p3 beta + 1 
47 

48 print('Affibody has %d residues:'%(p1.total residue()) 
49 print('%d alpha and %d beta\n' %(p alpha, p beta)) 

print('Ankyrin has %d residues:'%(p2.total residue())) 
51 print('%d alpha-helical and %d beta-strand\n' %(p2 alpha, p2 beta)) 
52 print('Fibronectin has %d residues:'%(p3.total residue())) 
53 print('%d alpha-helical and %d beta-strand\n' %(p3 alpha, p3 beta)) 
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2 Surface energy 

In this problem we will explore the conformation energy of two tri-peptide as a function of the 
χ1 angles of the middle reside. We will consider the AVA and ARA peptide. 

a) Give 3 components of the scoring function and discuss their relative weights. 

Solution: 
After creation of the score function scorefxn = create_score_function(’standard’), 
the command print scorefxn displays the componentns of the scoring function. Among 
many, we note: 

Definition Weight 
fa_atr 
fa_rep 
hbond_sr_bb, hbond_1r_bb 
hbond_bb_sc, hbond_sc 

Van der Waals net attractive energy 
Van der Waals net repulsive energy 
Hydrogen bonds, short and long-range (backbone-backbone) 
Hydrogen bonds (backbone-side chain and side chain-side chain) 

0.8 
0.44 
1.1, 1.17 
1.17, 1.1 

2 points: more possible answers can be found on Appendix A of the PyRosetta tutorials. 

b) Set the angles of your petpides so that they are in alpha-helical state.
 

Solution: 

•	 One approach is to have PyRosetta iterate through the different conformation and 
choose the one that has the minimal energy (see code). The phi and psi angles obtained 
are listed below: 

Residue 1 Residue 2 Residue 3 
ϕ angles for ARA: 0 -150 -150 
ψ angles for ARA: 150 150 0 
ϕ angles for AVA: 0 -150 -150 
ψ angles for AVA: 150 150 0 

Interestingly, for such a small peptide, the optimal conformation is not alpha-helical 
but beta-strand. 

•	 Another approach is to fix keep the side chain angles as that of default by the 
make_pose_from_sequence and change the ϕ and ψ angles manually: 

Residue 1 Residue 2 Residue 3 
ϕ angles for ARA: -55 -55 -55 
ψ angles for ARA: -60 -60 -60 
ϕ angles for AVA: -55 -55 -55 
ψ angles for AVA: -60 -60 -60 

4 points: either method is ok, allow for some variability in the chosen angles, especially 
for the peptide ends. 
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c) For both peptides, plot the energy as a function of the χ1 angle. To do so, vary the χ1 angle 
by 10°from -180°to 180°and calculate the energy of the peptide. 

Solution: 

With the optimized angles: 

With the set alpha-helical angles:
 

6 points
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Given the size of the arginine side chain, its mobility around the χ1 angle is much more 
restricted and results thus in large energy differences between the conformation. On the 
other hand, valine’s side chain is much smaller, therefore, it can rotate more freely. 

d) What do you observe? 

Solution: 

3 points
 

15 points overall for problem 2.
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Python code for Problem 2
 

PS6Q2Code.py: 

1 

2 

3 

4 

6 

7 

from rosetta import * 
from matplotlib import pylab 
rosetta.init() 
import math 
def minimize(p, first=1,last=3): 

minmover=MinMover() 
mmall=MoveMap() 

# Minimization function 

8 mmall.set bb true range(first,last) 
9 minmover.movemap(mmall) 

minmover.tolerance(0.5) 
11 minmover.apply(p) 
12 

13 out = open('PS6Q2data.txt','w') 
14 out2 = open('PS6Q2data2.txt','w') 

16 p1 = Pose();
 
17 make pose from sequence(p1, "ARA", "fa standard");
 
18 p2 = Pose();
 
19 make pose from sequence(p2, "AVA", "fa standard");
 

21 scorefxn = create score function('standard'); 
22 

23 # initialize angles to minimal energy state 
24 minimize(p1) 

minimize(p2) 
26 print('Phi angles 
27 print('Psi angles 
28 print('Phi angles 
29 print('Psi angles 

for ARA: %4.2f\t %4.2f\t %4.2f\n'%(p1.phi(1), p1.phi(2), p1.phi(3))) 
for ARA: %4.2f\t %4.2f\t %4.2f\n'%(p1.psi(1), p1.psi(2), p1.psi(3))) 
for AVA: %4.2f\t %4.2f\t %4.2f\n'%(p2.phi(1), p2.phi(2), p2.phi(3))) 
for AVA: %4.2f\t %4.2f\t %4.2f\n'%(p2.psi(1), p2.psi(2), p2.psi(3))) 

31 # Create chi angles vector
 
32 chi = []
 
33 for i in range(36):
 
34 chi.append(-180+i*10)
 

36 energy p1 = []
 
37 energy p2 = []
 
38 for i in range(len(chi)):
 
39 energy p1.append([])
 

energy p2.append([]) 
41 p1.set chi(1,2,chi[i]) # set chi 1 angle of residue 2 to value chi[i] 
42 p2.set chi(1,2,chi[i]) 
43 value1 = scorefxn(p1) 
44 value2 = scorefxn(p2) 

energy p1[i].append(value1) 
46 energy p2[i].append(value2) 
47 out.write('%4.2f\t%4.2f\t%4.2f\n'%(chi[i],value1,value2)) 
48 

49 pylab.figure(1) 
pylab.plot(chi, energy p1, 'r') 

51 pylab.plot(chi, energy p2, 'b') 
52 pylab.ylabel('Energy') 
53 pylab.xlabel('Chi 1 Angle / degree') 
54 pylab.suptitle('Optimized conformation', fontsize = 12) 
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55 pylab.legend(('ARA', 'AVA')) 
56 pylab.savefig('PS6Q2.png', format='png') 
57 pylab.close(1) 
58 

59 #-----------------------------------------------------------------------------# 
60 # Alternatively, we can use the default angles for side chains and 
61 # change psi and phi for alpha-helical state. See the difference... 
62 

63 make pose from sequence(p1, "ARA", "fa standard"); 
64 make pose from sequence(p2, "AVA", "fa standard"); 
65 

66 for k in range(3): 
67 p1.set phi(k+1,-55) 
68 p1.set psi(k+1,-60) 
69 p2.set phi(k+1,-55) 
70 p2.set psi(k+1,-60) 
71 

72 energy p1 = [] 
73 energy p2 = [] 
74 for i in range(len(chi)): 
75 energy p1.append([]) 
76 energy p2.append([]) 
77 p1.set chi(1,2,chi[i]) # set chi 1 angle of residue 2 to value chi[i] 
78 p2.set chi(1,2,chi[i]) 
79 value1 = scorefxn(p1) 
80 value2 = scorefxn(p2) 
81 energy p1[i].append(value1) 
82 energy p2[i].append(value2) 
83 out2.write('%4.2f\t%4.2f\t%4.2f\n'%(chi[i],value1,value2)) 
84 

85 pylab.figure(2) 
86 pylab.plot(chi, energy p1, 'r') 
87 pylab.plot(chi, energy p2, 'b') 
88 pylab.ylabel('Energy') 
89 pylab.xlabel('Chi 1 Angle / degree') 
90 pylab.suptitle('Default side chain angles and psi = -60, phi = -55', fontsize = 12) 
91 pylab.legend(('ARA', 'AVA')) 
92 pylab.savefig('PS6Q2v2.png', format='png') 
93 pylab.close(2) 
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3 Interaction prediction 

A number of crystallographic studies have shown that the binding interfaces between are gener­
ally large and include many intermolecular contacts. However, structural analysis alone cannot 
show whether all of these contacts are important for tight binding. For the determination of 
residues important for a binding interaction between two proteins, alanine screening is often 
performed. In this technique, each amino acid is substituted individually by an alanine. The 
impact in the interaction can then be measured and the importance of the residue can be 
assessed. In this problem, you will determine the importance of certain residues of hGH for 
binding to its receptor. Site 1 of hGH binds to its receptor with a KD of 0.3nM, corresponding 
to a binding free energy of ∆G of -12.3 kcal/mol. 

a) Your alanine screening experiment gives the result listed in the table below. Calculate the 
change in free energy, ∆∆G associated with these mutations. 

Mutation 
R43A 
E75A 
I103A 
W104A 
I105A 

KD (nM) 
0.6 
0.25 
0.9 
3.2 
1.05 

Solution: 

The relationship between KD and the free energy of the complex formation is given by: 

∆G = RT ln(KD) 

We can thus compute the values for ∆∆G: 

Mutation KD (nM) ∆G (kcal/mol) ∆∆G (kcal/mol) 
R43A 0.6 -11.93 0.39 
E75A 0.25 -12.43 -0.10 
I103A 0.9 -11.71 0.62 
W104A 3.2 -10.99 1.33 
I105A 1.05 -11.62 0.70 

Total 4 points: 2 points for the KD - ∆G relationship, 2 points for numerical application 
(other units are ok). 

b) Given the ∆∆G for these mutations, which residues are the most important for binding?
 

Solution: 

The top 3 are (in order) W104, I105, I103, since they have the most effect on the free 
energy change for complex formation (more positive). 
2 points 
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c) A different mutation on a residue that is burried inside the protein, W23A, yields a KD of 
120nM. Why is there such a dramatic effect on the KD when this residue is known not to 
interact with the the receptor? 

Solution: 

Given the large size of tryptophan and its location in the core of the protein, it may have 
serve stability purposes. Mutation of this residue could potentially disrupt the overall 
folding of the protein and therefore considerable loss of binding. 
3 points 

d) What does this tell you about the limitation of alanine scanning?
 

Solution: 

Alanine scanning can detect residues important for the binding interaction but can also 
give false positives such as in the W23A scenario above. Therefore, these studies must be 
conducted along with structural information of the protein-ligand complex. 
3 points 

12 points overall for problem 3.
 

11
 



4 Protein folding 

The p53 tumour suppressor protein is a sequence-specific transcription factor whose function is 
to maintain genome integrity. Inactivation of p53 by mutation is a key molecular event, which 
is detected in more than fifty percent of all human cancers. In response to stress insults, the p53 
tumour suppressor protein activates a network of genes whose products mediate vital biological 
functions, the most critical of which are cell cycle arrest and apoptosis. The large majority of 
the mutations affect residues that are critical for maintaining the structural fold of this a highly 
conserved DNA-binding (core) domain. 
In order to measure the free energy of unfolding, one often uses denaturing conditions such as 
urea treatment. The free energy change for unfolding, ∆Gu at each denaturant concentration 
can be calculated as follows: 

[U]
∆Gu = −RT ln Ku = −RT ln 

[F] 

Where [U] represents the concentration of unfolded protein and [F] of folded protein. However, 
we are interested in the unfolding free energy in absence of denaturing conditions. Denaturant-
induced unfolding transitions are most commonly interpreted assuming a linear relationship for 
the denaturant (C): 

∆Gu(C) = ∆G0 − m · Cu 

Given the data measured below at 25°C, what is the free energy of unfolding of this protein? 

[Urea] (M) 
2.0 
2.5 
3.0 
3.5 
4.0 
5.0 

Fraction of unfolded protein 
0.15 
0.28 
0.35 
0.60 
0.72 
0.83 
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The free energy of unfolding can be extrapolated from the free energy of unfolding 
under denaturing condtions given the linear relation ship between unfolding energy 
and denaturant concentration. Thus the first step is to calculate the free energy of 
unfolding under the conditions listed in the table above. The relationship for ∆Gu can 
be rewritten as a function of fU, the fraction of unfolded protein: 

∆Gu −RT ln 
[U] 
[F] 

−RT ln 
fU 

1 − fU 

The second step is to perform a linear fit of the free energy of unfolding as a function 
of denaturant conditions. 

Finally, the free energy of unfolding for the protein corresponds to the intersection with 
the y-axis, which corresponds to the constant term in the linear fit. The result is: ∆G0 

u 

0 1 2 3 4 5 6
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D
e
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u

Solution:
 

•
 

= = 

• 

• 

= 2.28 kcal/mol. 

10 points
 

10 points overall for problem 4.
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MATLAB code for Problem 4
 

unfolding.m: 

1 function unfolding
 
2 clear all;
 
3 clc;
 
4
 

5 U = [2.0 2.5 3.0 3.5 4.0 5.0];
 
6 fraction = [0.15 0.28 0.35 0.6 0.72 0.83];
 
7
 

8 DeltaG = zeros(1,6);
 
9 for i=1:length(U)
 

10 DeltaG(i) = -1.986*298*log(fraction(i)/(1-fraction(i)))/1000; % kcal/mol 
11 end 
12 

13 

14 f = inline('a(1)*x + a(2)', 'a', 'x'); 
15 

16 constants = nlinfit(U, DeltaG, f, [-2 2]); 
17 

18
 

19
 

20 nice plot([0 6], f(constants, [0 6]), '[Urea] / M', 'Delta G u', '',[0 0 1])
 
21 hold on;
 
22 plot(U, DeltaG, 'rx', 'MarkerSize', 12, 'LineWidth', 3)
 
23 axis([0 6 -2 3]);
 
24 hold off;
 
25
 

26 sprintf('Delta G is = %f', constants(2))
 
27
 

28
 

29
 

30 function nice plot(x,y, Xlab, Ylab, Title, ColorCode)
 
31 plot(x,y, 'Color', ColorCode, 'LineWidth', 2);
 
32 xlabel(Xlab, 'Fontsize', 10);
 
33 ylabel(Ylab, 'Fontsize', 10);
 
34 title(Title, 'Fontsize', 10);
 
35 end
 
36
 

37 end
 

14
 



5 Qualitative analysis of a nonlinear biochemical circuit 

GFPXY Promoter 2Promoter 1

Inducer 1

Inducer 2

Consider the synthetic genetic circuit above1 . X and Y are homooligomeric transcription 
factors mutually repressing each other’s expression, with x = [pX] and y = [pY]. Green fluores­
cent protein is a readout for the state of the system. Inducers 1 and 2 can be added to perturb 
the system. 

a) Recall this differential equation for transcriptional self-activation with a monomeric active 
form of the TF: 

x 
ẋ = β0 + βx − αx 

KD + x 

Write down a set of two analogous differential equations describing homooligomeric, mutual 
repression of two TFs (no derivation required). 

Solution: 

Let Kx = KD,eff,x and Ky = KD,eff,y. Then, {
 Kn
yẋ = β0,x + βx K − αxxn

y +yn 

m
xK
+xmẏ = β0,y + βy K − αyym

x

4 points.
 

b) To simplify the equations, make the following assumptions: 

• Both proteins are degraded or diluted at the same rate αx = αy = 1. 

• For both promoters, the maximum rate of expression is βx = βy = 10. 

• Basal (leaky) expression for both promoters is β0,x = β0,y = 0. 

• The effective KD is KD,eff,x = KD,eff,y = 1. 

• The active forms of both repressors are homodimeric. 

Write down the simplified set of ODEs. 

1This problem is inspired by Gardner TS, Cantor CR, and Collins JJ (2000): Construction of a genetic toggle 
switch in Escherichia coli. Nature 403 (6767): 339-342. 
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Solution: { 
ẋ = 10 

1+y2 − x 

ẏ = 10 
1+x2 − y 

2 points. 

c) Find the critical points (x0, y0) of the system where ( ̇x, ẏ)|x0,y0 = (0, 0). 
HINTS: 1. You will come across a higher-order polynomial equation which you will need 
to solve. It is solvable by hand, but do feel free to use  or an online equation solver 
such as http://www.numberempire.com/equationsolver.php. 
2. Only positive, real-valued roots of that polynomial are biochemically meaningful steady 
states. Solutions which are negative or complex are mathematically legitimate, but such 
concentrations of the species in question will never occur; thus, these solutions can be 
disregarded in the rest of this problem. 

Solution: 

At critical points, ẋ = ẏ = 0. Thus, 

10 
x0 = 2 (1) 

1 + y0 
10 

y0 = 2 (2) 
1 + x0 

Substitute (2) into (1): 

10 
x0 = ( )2 

1 + 10 
21+x( ) 0 

100 
x0 1 + = 10 2 41 + 2x0 + x0 

100x0 
x0 + = 10 2 41 + 2x0 + x0( )

2 4 2 4 x0 1 + 2x0 + x + 100x0 = 10 + 20x0 + 10x0 0 
5 4 3 2 x0 − 10x0 + 2x0 − 20x0x0 + 100x0 − 10 = 0 

Solve using an online symbolic equation solver: 

≈
 
x0 = 2 V x0 = 5 ± 2 6 V (x0 = −1 ± 2i)
 

(continued on next page)
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10For x0 = 2, y0 = = 2. 
1+22≈ 

For x0 = 5 + 2 6, 

10 10 1 
y0 = ( ≈ ) = ≈ = ≈ 

1 + 25 + 20 6 + 24 50 + 20 6 5 + 2 6 
y0 1 1 ≈ = ( ≈ ) ( ≈ ) = = 1 

5 − 2 6 5 + 2 6 5 − 2 6 25 − 24 
≈ 

y0 = 5 − 2 6 

≈ ≈ 
Analogously, for x0 = 5 − 2 6, y0 = 5 + 2 6. 

So altogether, the critical points are 

(x0, y0) = (2, 2) 
≈ ≈ 

(x0, y0) = (5 + 2 6, 5 − 2 6) R (9.899, 0.101)
≈ ≈ 

(x0, y0) = (5 − 2 6, 5 + 2 6) R (0.101, 9.899) 

6 points — 2 for each critical point.
 

( )
d) Find the Jacobian matrix A = 

fx fy , where ẋ = f(x, y) and ẏ = g(x, y).
gx gy 

Solution: 

( ) ( −20y )
fx fy 

−1 
(1+y2)2 

A = = −20xgx gy 2)2 −1 
(1+x

2 points. 
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e) Find the trace τ and the determinant ∆ of the Jacobian matrix. Then, evaluate both at 
each of the critical points. 

Solution: 

τ = −2 
400xy

∆ = 1 − 2 2(1 + x2) (1 + y2)

At (x0, y0) = (2, 2): 

400 · 4 1600 625 − 1600 39 
∆ = 1 − = 1 − = = − 

(1 + 4)2(1 + 4)2 625 625 25 

≈ ≈ ≈ ≈ 
At (x0, y0) = (5 + 2 6, 5 − 2 6) and, by symmetry, (x0, y0) = (5 − 2 6, 5 + 2 6): 

∆ = 1 − 

= 1 − 

= 1 − 

= 1 − 

= 1 − 

= 1 − 

= 0.96 

4 points. 

( ≈ ) ( ≈ )
400 5 + 2 6 5 − 2 6( ( ≈ )2)2 ( ( ≈ )2)2 

1 + 5 + 2 6 1 + 5 − 2 6

400(25 − 24) ( ( ≈ ))2 ( ( ≈ ))2 
1 + 25 + 20 6 + 24 1 + 25 − 20 6 + 24


400
 ( ≈ )2 ( ≈ )2 
50 + 20 6 50 − 20 6


400
 (( ≈ ) ( ≈ ))2 
50 + 20 6 50 − 20 6

400 

(2500 − 2400)2 

4 
100 

f) For each critical point, 

i) Calculate the eigenvalues λ of the Jacobian matrix at that point. 

ii) Use the eigenvalues to classify the critical point as a stable or unstable equilibrium, a 
stable or unstable spiral, the center of a periodic orbit, or a saddle. 
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Solution:
 

≈ 
τ ± τ 2 − 4∆ 

λ1,2 = 
2 

At (x0, y0) = (2, 2): √ ( )
−39−2 ± 4 − 4 25 

λ1,2 = 
2√ 

39 
= −1 ± 1 + 

25√ 
64 

= −1 ± 
25 

8 
= −1 ± 

5 
3 13 

λ1 = and λ2 = − 
5 5 

Im{λ1,2} = 0 : not a spiral or center; 

Re{λ1} > 0 and Re{λ2} < 0 : saddle point. 

≈ ≈ ≈ ≈ 
At (x0, y0) = (5 + 2 6, 5 − 2 6) and, by symmetry, (x0, y0) = (5 − 2 6, 5 + 2 6): 

≈ 
λ1,2 = −1 ± 4 − 4 · 0.96 

1
 
2
≈
 

= −1 ± 1 − 0.96
 
≈ 

= −1 ± 0.04 

= −1 ± 0.2 

λ1 = −1.2 and λ2 = −0.8 

Im{λ1,2} = 0 : not a spiral or center; 

Re{λ1,2} < 0 : these two critical points are stable steady states. 

≈ ≈ 
6 points: 3 for analysis of (0,0) and 3 for (5 ± 2 6, 5 ± 2 6). 

g) By hand or with the help of  (but without numerical simulation), sketch a phase 
portrait of the system: 

i) Use x as your horizontal and y as your vertical axis. 

ii) Sketch the nullclines f(x, y) = 0 and g(x, y) = 0 and mark all critical points.  
might help to do this accurately. 

iii) Use your earlier analysis of the stability of each critical point to sketch local, nearby 
trajectories around each critical point (best done by hand). 

iv) Connect the local trajectories to extend throughout the phase plane. 
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v) Looking at this phase portrait, can you guess why this circuit might be preferable to 
the bistable switch implemented via sigmoidal self-activation in the last problem set? 

Solution: 

0 2 4 6 8 10
0

2

4

6

8

10

x

y
Phase portrait for β

x
 =10 , β

y
 = 10

 

 

dy/dt = 0, y = 10/(1+x
2
)

dx/dt = 0, x = 10/(1+y
2
)

stable SS

saddle point

This system is preferable for two reasons: First, its stable points represent very clearly 
distinct transcriptional programs with X high / Y almost zero and X almost zero / Y high, 
respectively; whereas for a Hill coefficient of two, the self-activation switch had relatively 
nearby stable states. Second, this system is much more robust; each stable point drains a 
large basin of attraction in the phase plane, and both concentrations x and y would have 
to be strongly perturbed away from equilibrium to move a system from one of the stable 
teady states past the separatrix in the middle into the basin of attraction of the other. 
The self-activating TF, by constrast, can switch states following a modest perturbation of 
a single concentration. 
6 points: 3 for the phase portrait and 3 for (any) correct and substantiated discussion of 
advantages. 

h) All else remaining unchanged, what happens to the system if βy = 4? 
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Solution: 

Again plot the (new) nullclines (and here, for clarity, a full phase portrait; although that 
is not required for full credit): 

0 2 4 6 8 10
0

2

4

6

8

10

x

y

Phase portrait for β
x
 =4 , β

y
 = 10

 

 

dy/dt = 0, y = 10/(1+x
2
)

dx/dt = 0, x = 4/(1+y
2
)

stable SS

saddle point

Two of the three critical points vanish (this is called a saddle-node bifurcation), and we 
are left with a monostable system. Thus, the system’s ability to function as a bistable 
switch is sensitive to maximal rates of transcription from the two promoters. 
3 points — for the realization that the system loses its bistability. This conclusion can be 
reached by different paths - plotting the nullclines is the easiest, but re-doing the entire 
problem is also legitimate. 

33 points overall for problem 5.
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MATLAB code for Problem 5
 

ps6q5.m: 

1
 

2 % 20.320 Fall 2010
 
3 % Pset 6, problem 5
 
4 % Performs stability
 

6 function ps6q5()
 
7
 

8 clc;
 
9 close all;
 

analysis for 

11 plotPhasePortrait(10, 10);
 
12 plotPhasePortrait(4, 10);
 
13
 

14 function plotPhasePortrait(betax,
 

16 x = linspace (0,11,100);
 
17 ynull = betay ./ (1 + x.ˆ2);
 
18 xnull = betax ./ (1 + x.ˆ2);
 
19 [X,Y] = meshgrid(0:0.6:11);
 

DX = betax./(1+Y.ˆ2) - X; 
21 DY = betay./(1+X.ˆ2) - Y; 

toggle and plots phase portrait 

betay) 

22 sz = sqrt(DX.ˆ2 + DY.ˆ2); % The length of each arrow.
 
23 DXX = DX./sz;
 
24 DYY = DY./sz;
 

26 figure()
 
27 hold on;
 
28 hy = plot(x,ynull,'r-', 'LineWidth',2);
 
29 hx = plot(xnull,x,'g-', 'LineWidth',2);
 

hv = quiver(X,Y,DXX,DYY,.6); 
31
 

32 c = [1, -betax, 2, -2*betax, (1+betayˆ2), -betax ]
 
33 ssx = roots(c)
 
34 ssy = betay ./ (1 + ssx.ˆ2)
 

36 stablenodes = [];
 
37 saddles = [];
 
38 for i=1:length(ssx)
 
39 if imag(ssx(i)) == 0 && imag(ssy(i)) == 0
 

Asym = [-1, 2*betax*ssy(i)/((1+(ssy(i))ˆ2)ˆ2); 
41 2*betay*ssx(i)/((1+(ssx(i))ˆ2)ˆ2),-1]; % [fx, fy; gx, gy]\ 
42 A = double(Asym); % convert from symbolic to numeric 
43 evalues = eig(A); 
44 if ¬any(imag(evalues(:))) % no imaginary eigenvalues 

if all(evalues(:) < 0) % stable node 
46 stablenodes = [stablenodes; [ssx(i), ssy(i)]]; 
47 elseif ¬all(evalues(:) > 0) % saddle 
48 saddles = [saddles; [ssx(i), ssy(i)]]; 
49 end 

end 
51 end 
52 end 
53 

54 pnodes = double(stablenodes) 
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55 psaddles = double(saddles) 
56 

57 for i=1:size(pnodes,1) % for each stable node 
58 hss = plot(pnodes(i,1),pnodes(i,2),'ko', 'MarkerFaceColor', 'k'); 
59 end 
60 

61 for i=1:size(psaddles,1) % for each stable node 
62 hsp = plot(psaddles(i,1),psaddles(i,2),'ko', 'MarkerFaceColor', 'y'); 
63 end 
64 

65 hsp = plot(-1,-1,'ko', 'MarkerFaceColor', 'y'); % so the handles are defined 
66 hss = plot(-1,-1,'ko', 'MarkerFaceColor', 'k'); % even when there are no nodes 
67 

68 legend([hy hx hss hsp], ['dy/dt = 0, y = ', num2str(betay), ... 
69 '/(1+xˆ2)'], ['dx/dt = 0, x = ' num2str(betax) '/(1+yˆ2)'], ... 
70 'stable SS', 'saddle point', 'Position', -1); 
71 title(['Phase portrait for \beta x =' num2str(betax), ... 
72 ' ,\beta y = ' num2str(betay)] ,'FontSize', 16, ... 
73 'FontWeight', 'bold'); 
74 xlabel ('x', 'FontSize', 12, 'FontWeight', 'bold'); 
75 ylabel ('y', 'FontSize', 12, 'FontWeight', 'bold'); 
76 set(gca,'FontSize',12, 'FontWeight', 'bold'); 
77 axis([0 11 0 11]); 
78 hold off; 
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