
 

 

 

 
 

 

 

  

 

  

 

 
 

 

 

20.320 Problem Set 6 


Question 1 


Uncompetitive enzyme inhibitors bind to a site distant from the active site of the enzyme-

substrate complex and allosterically inhibit catalysis. A schematic of this process is shown 
below (Figure 6.19 from Wittrup and Tidor). 

k� 

k � 

k t 

kt k'"" 

A) 	Write a system of Ordinary Differential Equations to describe the dynamics of 
uncompetitive inhibition. Label the above schematic with the rate constants you use in 

your equations. You should have one differential equation for each species in the 

system. 

d P[ ]
(1) = kcat ES[ ]

dt
 

d[EIS]

(2) = ES - k EISkI [ ][ ]I [ ]

dt -I
 

d ES
[ ]
(3) = E S - k ES - k ES ES + k EISk1[ ][ ] [ ] [ ] - kI [ ][ ]I [ ]-1 cat	 -Idt
 

d E
[ ]
(4)  = E S + k ES + k ES  -k1[ ][ ] [ ] [ ]-1 catdt 
 

d S[ ]
(5)  = E S + k-1 ES  -k1[ ][ ] [ ]

dt
 

d[ ]I

(6)  = ES [ ] + k-i [EIS]  -ki [ ] I

dt 
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20.320 Problem Set 6 


Question 1 


B) 	Derive the Michaelis-Menten equation for reaction velocity in terms of [S], [I], [E0], and 

the relevant rate and equilibrium constants. Clearly state the assumptions you make 

in your derivation. 

Assuming quasi-steady state for enzyme-substrate complex binding the inhibitor means that we 

can set Equation 2 equal to zero. Noting that the same terms from Equation 2 appear in 
Equation 3, we can now simplify Equation 3. Applying the quasi-steady-state assumption to 

Equation 3 means we can set our new expression equal to zero, as well. 

(7) 0 = E	 S - -1 + kcat )[ ]k1[ ][ ] (k ES

Apply conservation of enzyme to eliminate [E]: 

(8) E0 = [ ] + ES + [  ] , therefore E = [ ] - ES - [  ]  [ ] E [ ] EIS [ ] E0 [ ] EIS

Substituting Equation 8 into Equation 7: 

(9) 0 = ( E0 - [ ] - EIS S - -1 + )[ ]k1 [ ] ES [  ]  )[ ] (k kcat ES

Using the definition of KM allows us to replace the rate constants in Equation 9: 

k k-1 + cat(10) 	KM =
 
k1
 

Plugging (10) into (9): 

(11) 0 = ( E0	 - [ ] - ESI S -Km [ ][ ] ES [  ]  )[ ] ES

Assuming rapid equilibrium binding of inhibitor allows us to relate the equilibrium inhibition 

constant KI to [EIS] as follows: 

[ ]ES [ ]I
 (12) K I = 

EIS[ ]  

Plugging (12) into (11): 

� [ ]ES [ ]I � 
(13) 0 =	 - ES - S -K ES�[ ]E0 [ ] �[ ] m [ ]  

� 	 K I � 

Following some algebra, Equation 13 can then be rearranged to solve for [ES]. 

[ ]E
0

S[ ]
(14) ES =[ ]

1+K +
m 

[ ]I

S[ ]

K
I

Plugging Equation 14 into Equation 1: 
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20.320 Problem Set 6 


Question 1 


d P k	 S[ ]  E0 [ ]cat [ ]
v = = 

(15) 	 dt [ ]I

Km + 1+ 

K I 

[ ] 
S

Recalling that vmax = kcat[E0][S] and applying some algebra yields the solution in Michaelis-
Menten form. Assuming that substrate is in excess allows us to replace [S] with [S0]. 

vmax [ ] 

[ ]I

S0


(1+ )K I v = 
(16) 

[ ]I	
+ S0

Km [ ]
(1+ )K I 

C) Based on your answer to Part B), describe the effect of an uncompetitive inhibitor on the 
vmax and overall KM of the reaction. What scaling factor(s) are applied to these terms? 

Uncompetitive inhibiton decreases both the vmax and KM of a reaction. In this case, both terms 
[ ]I

are divided by the term 1+ K I 
. 

D) Given KI = 75 nM, KM = 25 fM and [S0] = 5 mM, what concentration of inhibitor is needed 

to achieve IC50? 

vmax [ ]IC50 
S0

(1+ K I 
) 

K v + S0K [ ]m max	 m+ [ ]S0	 S0[ ]IC50 IC50	 IC50(	 1+ [ ]0.5v 1 1+	 ) ( ) K + S0 (1+ )K I K I m	 K I = = =	 = 
v 2 vmax [ ]S0

K vmax [ ]  Kmm	 S0+ [ ]S0	 + S0[ ]IC50	 IC50[ ]  1+ 

1 Km + S0

Km + S0 (1+ K I 
)	 ( K I 

) 

[ ]  
= 

+ S0 1+ 
IC502 Km [ ]( K I 

) 

IC50
1 

[Km + S0 + S0 ( )  ] = m + S0[ ] [ ] K I
K [ ]

2 

IC50 

K I
= m [ ][ ]S0 ( ) K + S0

 )	 ( )K	 25 x10-6  M
IC50 = K I( 

m +1) = (75 x10-9  M)( +1) = 75.4 nM 
 [ ]S0  	  5 x10-3  M  
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20.320 Problem Set 6 


Question 2 


In order to estimate the kinetics for a given enzyme-substrate reaction, an in vitro reaction is 

typically set up with a reporter for product formation.  For instance, in vitro kinase reactions 

typically use 32P, a radioactive isotope of phosphate in the v-position of ATP, and then measure 
the amount of radioactivity incorporated in the substrate.  Although most of these reactions are 

performed with high substrate:enzyme ratio, often it is difficult to obtain large amounts (or large 

concentration) of substrate. 

Consider a single-substrate enzymatic reaction with no inhibition and the following parameters: 

-	 Reaction volume: 100 fL 

-	 Initial substrate concentration: 5 fM 

-	 Enzyme concentration: 0.5 fM 

-	 k1 = 3 x 105 L mol-1sec-1 

-	 k-1 = 5 sec-1 

-	 kcat = 3 sec-1 

A) 	Under the above conditions, calculate the characteristic time for this system to reach 
quasi-steady state. 

k	 5 + 3 s-1 
-1 + kcat = =	 = 2.7 X10-5  MKM	 -1k1 3 X105  L mol-1 s

1	 1 
= =	 = 0.1 s tQSSA 
k1(KM + S ) (3 X105  L mol-1 s-1)(2.7 X10-5 

+ 5 X10-6  M)[ ]0 

B) What is the characteristic time to deplete substrate under these conditions?  

[ ] 2.7 X10-5 
+ 5 X10-6  MKM + S

0t S	 = = = 21 s [ ]  [ ]0 
3 s-1) 0.5 X10-6  Mkcat E ( ( ) 

C) 	Use MATLAB to compare the kinetics of product formation in this system with and 

without applying the Michaelis-Menten approximation. 

i.	 For simulating the reaction with no approximations, use ode23s to solve the 

representative system of differential equations with the appropriate initial 

conditions. Simulate the system under Michaelis-Menten conditions by simplifying 

your equations with the appropriate assumptions. Plot product formation over time 
for the first minute of the reaction on the same axes for both simulations. 
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20.320 Problem Set 6 


Question 2 


For an enzymatic reaction without inhibition, the reaction scheme is as follows: 


k–1 kcat 

E + S � ES � E + P 
k1 

The differential equations governing this system are: 

d ES[ ]  
E S - k [ ] ES= k1[ ][ ] ES - k [ ]-1 catdt
 

d S
[ ]  
+ ES= -k1[ ][ ] k [ ]E S -1dt
 

d P
[ ]  
= k [ ]cat ES

dt 

Since E = E + ES , we can substitute [ ] ES = E[ ] [ ] [ ] E - [ ] [ ]  in our equations, yielding the 
0 0 

following system: 

d ES[ ]  
= E - ES S - k ES - k ESk1([ ]0 [ ])[ ] -1[ ] cat [ ]

dt
 

d S
[ ]  
= -k1([ ] - ES S + k ESE [ ])[ ] [ ]

dt 0 -1 

d P[ ]  
= k EScat [ ]

dt 

For the Michaelis-Menten approximation, the system simplifies as follows. Substrate is in 

excess, so [S] is replaced by [S]0, and [ES] is calculated based on quasi-steady state conditions. 
Therefore: 

E S[ ] [ ] k -1 + kcat0 0 =[ ]ES = , where KMQSSA [ ] 
KM + S
0 

k1
 

d P[ ]  
ES

dt 
= kcat [ ]  

Coding this system into MATLAB produces the following results: 

5



 
 

     

 
 
 

  

  

 
 

 

 

 

 

 

 

 

  

20.320 Problem Set 6 


Question 3 


-5
X 10

0 

0.5 

1 

1.5 

��
� (

M
)

 

 
No assumptions 
Michaelis-Menten 

0 20 40 60 
Time (s) 

ii.	 Based on your plot and on the criteria discussed in class, evaluate the validity of 

the Michaelis-Menten approximation under these conditions. Discuss which 

assumptions hold and which do not. Why are your curves different? 

In order for the Michaelis-Menten approximation to hold, the following criteria must be met: 

-	 Must reach quasi-steady state well before substrate depletion (tQSSA << t[S]). From Parts 
A and B, we can see that this condition is met. 

[ ]E0
-	 <<1
 

KM + S0
[ ]  

0.5 X10-6  M 
In this case: 	 = 0.016 Therefore, this condition is met. 

5+3 s-1 

3X105 M-1 -1 + 5 X10-6  M 
s

-	 Substrate must be in great excess, since we are assuming [S] = [S0]. Since the other two 

conditions have been met, we are likely entering a substrate-limiting regime when the 
two curves begin diverging. Therefore, [S0] should be increased. 

iii. 	 Change an aspect of the original system (either rate constants or initial conditions) 
such that the Michaelis-Menten approximation is valid for this time scale. On a new 

plot, overlay your two curves to show they are the same. 

Increase [S0] by a factor of 1000, such that [S0] = 5 mM. This produces the following results: 
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20.320 Problem Set 6 


Question 3 


X 10
-4 

1 

0.8 

0.6 

0.4 

0.2 

0 

Time (s)

Code: 

% Initial conditions 

E0 = 0.5e-06; 

S0 = 5e-06; % Change this to 5e-03 for Part Ciii. 

ES0 = 0; 

P0 = 0; 


% Rate constants 

kf = 3e+05; 

kr = 5; 

kcat = 3; 


% Initialize parameters vector 

params = [P0 ES0 S0 E0 kf kr kcat];
 

% Set timespan 

time = [0:0.1:60]; 


[t y] = ode23s(@reaction, time, params); % Solve with no assumptions
 

% Calculate Michaelis-Menten constant and apply QSSA for [ES]:
 
Km = (kr + kcat)/kf; 

ES = (E0*S0)/(Km + S0); 


params = [P0 ES kcat]; 

[t z] = ode23s(@MMrxn, time, params); % Solve with Michaelis-Menten 


plot(t, y(:,1), t, z(:,1)) 

legend('No assumptions', 'Michaelis-Menten', 'location', 'NorthWest'); 

xlabel('Time (s)'); 

ylabel('[P] (M)'); 


�
� (

M
)


 

No assumptions 
Michaelis-Menten 

0 20 40 60
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20.320 Problem Set 6 


Question 3 


function [out] = reaction(t, params) 

% Initial conditions 

P = params(1); 

ES = params(2); 

S = params(3); 


% Parameters and Rate constants

 E0 = params(4); 

kf = params(5); 

kr = params(6); 

kcat = params(7); 


% System of differential equations

 dPdt = kcat * ES; 

dESdt = kf*(E0 - ES)*S - kr*ES - kcat*ES; 

dSdt = -kf*(E0 - ES)*S + kr*ES; 


% Return changing values for P, ES, and S

 out = [dPdt; dESdt; dSdt; 0; 0; 0; 0]; 


return 

function [out] = MMrxn(t, params) 

% Initial conditions 

P = params(1); 

ES = params(2); 


% Parameters 

kcat = params(3); 

% Differential Equation 

dPdt = kcat * ES; 


    % Return changing values for P, and S 
out = [dPdt; 0; 0]; 

return 
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20.320 Problem Set 6 


Question 3 


Enzymes can typically catalyze reactions involving many different substrates, and can therefore 

be used to produce multiple products. Often these reactions have different KM and kcat values, 

which provides a degree of specificity. This problem will examine the effects of competition for 
enzyme binding on the enzyme’s substrate specificity. 

A)	 Provide a schematic diagram and write out the differential equations with the appropriate 
rate constants for two substrates reacting with the same enzyme to form two different 

products. Assume that the enzyme has one active site that can be occupied by a single 

substrate molecule at a time.  

kcatAk–1A 

E + SA  ESA � E + PA
k1A 

+ 

SB
 

k1B k–1B 

ESB
 

E 

kcatB 

+ 

PB
 

d[ ]PA	 d PB[ ]
[ ] 	  ESB= kcatA ESA	 = kcatB[ ]  

dt dt 

d[ ]SA d SB[ ]  
= E [ ] k [ ] 	  E [ ] k [ ]  -k1A [ ] SA + -1A ESA	 = -k1B [ ] SB + -1B ESBdt dt 

d[ ]  ESA d ESB[ ]  
= E [ ] - k ESA = E [ ] - k ESBk1A [ ] SA ( -1A + kcatA)[  ]  k1B [ ] SB ( -1B + kcatB)[  ]  

dt dt 

d E[ ]  
= E [ ] + k ESA E [ ] + k ESB-k1A [ ] SA ( -1A + kcatA )[  ] - k1B [ ] SB ( -1B + kcatB)[  ]  

dt 
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20.320 Problem Set 6 


Question 3 


B)	 To estimate the temporal effects as well as the specificity effects, we will compare the 
level of product formation for each substrate at various times up 100 s, in the presence 

and absence of competition.  Using an initial enzyme concentration of 50 fM and an 

initial substrate concentration of 175 fM for each substrate, graph the formation of 
product 1 assuming no product 2 is formed, product 2 assuming no product 1 is formed, 

and product 1 and product 2 assuming that the other can be formed on the same graph 

in MATLAB (you should have 4 lines total on the graph) for the time period of 0 to 100 

seconds. Use the following rate constants: 

Rate of association between Enzyme and Substrate 1: 5 x 103 M-1 s -1 

Rate of dissociation of the Enzyme–Substrate 1 complex:  3 x 101 s -1 

Rate of formation of Product 1 from Enzyme–Substrate 1 complex:  2 x 101 s -1 

Rate of association between Enzyme and Substrate 2: 2 x 106 M-1 s -1 

Rate of dissociation of the Enzyme–Substrate 2 complex:  2 x 101 s -1 

Rate of formation of Product 2 from Enzyme–Substrate 2 complex: 2 x 10-1 s -1 

� 10 
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See Part C for code. 
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Question 3 


[P
l (
M

)

 

Compare the concentration of each product at a time of 20 seconds as the enzyme 

concentration increases from 1 to 100 uM, repeat for each substrate in the absence of 

competition, then repeat with both substrates together as in Part B). 
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Code: 

% Initial Conditions 

PA0 = 0; 

PB0 = 0; 

SA0 = 175e-06; 

SB0 = 175e-06; 

ESA0 = 0; 

ESB0 = 0; 

E0 = 50e-06; 


% Rate Constants 

kfA = 5e+03; 

krA = 3e+01; 

kcatA = 2e+01; 

kfB = 2e+06; 

krB = 2e+01; 

kcatB = 2e-01; 


% Time span for solver 

time = (0:1:100); 


% Establish parameters array for solver 

params = [PA0 PB0 SA0 SB0 ESA0 ESB0 E0 kfA krA kcatA kfB krB kcatB];
 

% Solve system with Product 1 alone: i.e. [SB]_0 = 0 

params(4) = 0; 

[t A_only] = ode15s(@reaction, time, params);
 
params(4) = SB0; 
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20.320 Problem Set 6 


Question 3 


% Solve system with Product 2 alone: i.e. [SA]_0 = 0     

params(3) = 0; 

[t B_only] = ode15s(@reaction, time, params);
 
params(3) = SA0; 


% Solve system with both products present
 
[t both] = ode15s(@reaction, time, params); 


% Plotting for Part B 

figure(1) 

plot(t, A_only(:,1), t, B_only(:,2), t, both(:,1), t, both(:,2))
 
legend('[P_A] No S_B', '[P_B] No S_A', '[P_A]', '[P_B]', 'location', 

'SouthEast'); 

xlabel('Time (s)') 

ylabel('[P] (M)') 


% Part C: Concentrations at t = 20s
 
figure(2) 

time = [0:10:20]; 


for E0 = (1:100) 
    % Solve for range of initial enzyme concentrations from 1 - 100 pM 

params(7) = E0 * 1e-06; 

    % Solve system with Product 1 alone: i.e. [SB]_0 = 0 

params(4) = 0; 

[t A_only] = ode15s(@reaction, time, params);


 A_curve(E0) = A_only(size(A_only, 1), 1); % Add to array of [P1] vs. [E0]

 params(4) = SB0; 


% Solve system with Product 2 alone: i.e. [SA]_0 = 0 

params(3) = 0; 

[t B_only] = ode15s(@reaction, time, params);


 B_curve(E0) = B_only(size(B_only, 1), 2); % Add to array of [P2] vs. [E0]

 params(3) = SA0; 


% Solve system with both products present

 [t both] = ode15s(@reaction, time, params); 


% Add to array of [P1] & [P2] vs. [E0]

 both_curve(E0,:) = [both(size(both, 1),1) both(size(both, 1),2)]; end
 

% Plot four curves vs [E0] on same axes 

E0 = (1:100); 

plot(E0, A_curve, E0, B_curve, E0, both_curve(:,1), E0, both_curve(:,2))
 
xlabel('[E]_0 (M)') 

ylabel('[P] (M)') 

legend('[P_A] No S_B', '[P_B] No S_A', '[P_A]', '[P_B]', 'location', 

'SouthEast'); 
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Question 3 


function [out] = reaction(t, params)

 % Initial Conditions 

SA = params(3); 

SB = params(4); 

ESA = params(5); 

ESB = params(6); 

E = params(7); 


% Rate Constants 

kfA = params(8); 

krA = params(9); 

kcatA = params(10); 

kfB = params(11); 

krB = params(12); 

kcatB = params(13); 


  % System of differential equations 

dPAdt = kcatA * ESA; 

dPBdt = kcatB * ESB; 

dSAdt = -kfA*E*SA + krA*ESA; 

dSBdt = -kfB*E*SB + krB*ESB; 

dESAdt = kfA*E*SA - (krA + kcatA)*ESA; 

dESBdt = kfB*E*SB - (krB + kcatB)*ESB; 

dEdt = -kfA*E*SA + (krA + kcatA)*ESA - kfB*E*SB + (krB + kcatB)*ESB; 


  out = [dPAdt; dPBdt; dSAdt; dSBdt; dESAdt; dESBdt; dEdt; 0; 0; 0; 0; 0; 0]; 

return 

C) Explain the shape of the shape of the curve of product 1 formation in Parts B) and C). 
What type of inhibition is the early part of the curve analogous to? How does the overall 

curve shape from this type of inhibition differ with the curves you produced and why? 

The shape of the curve for product 1 formation is due to competition between substrate 1 and 
substrate 2 for enzyme binding. This is analogous to competitive inhibition: substrate 2 is a 

stronger binder to the enzyme than substrate 1, but it is converted to product at a slower rate 

after binding. This makes it a pseudo-competitive inhibitor since it is essentially blocking 

substrate 1 from entering the site. It is different than normal competitive inhibition, however, in 
the sense that substrate 2 is used up with time and therefore has a diminishing effect of 

preventing the formation for product 1. This is the reason that we see an S-like curve shape in 

part b. In part d we see an increasing amount of product formed at 20 seconds because as 
more enzyme is available, more of substrate 1 will be able to bind as the substrate 2 

concentration is more rapidly depleted. 
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