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Lecture Notes for 20.320 Fall 2012 

Network Modeling 
 

Ernest Fraenkel 
 
 

In this lecture we will explore ways in which network models can help us to understand better 
biological data.  We will explore how networks can be used to uncover groups of proteins 
and/or genes that carry out a particular biological function.  For example, we will use networks 
to find kinase substrates and to identify the function of protein sequences.  In all these cases, 
we can take advantage of an area of computer science known as graph theory, which provides 
a number of sophisticated tools for studying networks. 

Networks can be formally defined as a set of nodes (also called vertices) that are connected by 
edges.  Typically a biological system is represented by creating a node for each protein or gene 
of interest, and using edges between the nodes to represent a relationship between them.  For 
example, we could represent a signaling pathway of the type you have been studying in this 
course using the diagram below.  Here edges represent kinase-substrate interactions.   
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Identifying Kinase Substrates 
Sequence motifs can represent the preferred targets of an isolated kinase domain, but 
predictions based on these motifs suffer from obvious limitations.  As we have discussed in 
previous lectures, the enzymatic specificity of the kinase represents only one component of the 
total specificity.  Other protein-protein interactions between the substrate and the kinase also 
contribute to specificity, including SH2 and SH3 domains, D domains and DEF domains. In 
addition, closely related proteins can have related specificities.  Thus, the motif results for 
members of the same kinase family may be extremely similar.  Sequence features alone cannot 
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guarantee that we have identified the right family member.  The ideal solution would combine 
knowledge of all the mechanisms of specificity that we have already outlined.  Of course, the 
experimental data are still too limited to provide all the necessary information about docking 
motifs, scaffolds, interactions domains, subcellular localization,etc. for this approach to be 
practical. 

An interesting approach leveraging what we do know to identify kinase targets was reported by 
Linding et al. (2007).  Cell 129:1415-26.  Using a network model, they are able to integrate many 
different types of data to find the kinase that was most likely to have phosphorylated a 
particular peptide.  In order to understand their approach, we will first cover a few basics of 
graph theory in the context of biological networks. 

Where do the edges come from? 
The tools that we will use from graph theory are extremely general, and make no assumptions 
regarding what the nodes and edges represent.  We have already used an example in which the 

edges represent kinase-substrate interactions.  
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  Note that the edges have arrows to 
represent the direction from kinase to substrate.  This is an example of a directed graph. 

In other cases, we might wish to represent physical associations of proteins, even if they do not 
carry out any enzymatic reaction.  In the example above, we could add the scaffold protein 
Ste5, as shown below.  Here the edges without arrows (undirected edges) represent protein-
protein interactions for which there is no particular meaning to a direction.  Mass-spectrometry 
based methods and two-hybrid screens have identified hundreds of thousands of potential 
protein-protein interactions. The set of all known protein-protein interactions is often called 
the “interactome.”  Because these data are so vast, the only efficient way to use them is 
through graph theory. 
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We can also build networks in which the edges represent more abstract types of information.  
For example, we could make a network in which nodes are genes and edges connect genes that 
cause the same phenotype or disease.  In the network below, FANCI, FANCL and BRIP1 are all 
associated with the blood disorder Fanconi anemia.  BRIP1 is also associated with breast cancer, 
along with AR, BRCA1 and BRCA2.  In this case, the entire network is undirected. 

BRIP1

FANCL

ARFANCI

BRCA1

BRCA2

 

 

You may notice that the above graph is organized so that the genes associated with breast 
cancer are grouped together and those associated with Fanconi anemia are in a separate group.  
While this is a trivial example, clustering the nodes on a very complicated graph can often 
provide useful information about the meaning of nodes. Graph theory provides us with 
methods for analyzing networks to find such structure.   

 

Basic Graph Theory 
We will begin by defining some of the important terms used in graph theory: 
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Edge weights 
It is sometimes helpful to be able to associate a number with each edge in a graph.  These 
numbers are called weights.  For example, we might want to use these numbers to represent 
the strength of an interaction in terms of free energy.  In the case of Networkin and several 
other examples of interest, the edges are derived from many different data sources, and are 
likely to include both high-confidence and dubious links between proteins.  In these types of 
situations, it is helpful to associate each edge with a number that represents our confidence in 
the interaction. 

Distance and Shortest paths 
We will soon see that it is useful to be able to find the shortest path between two nodes in a 
graph.  The length of a path in a network is defined as the sum of the weights of the edges in a 
path.  Consider the graph below, representing two possible paths by which node 1 causes the 
phosphorylation of node 4.  The path either goes through node 2 or node 4.  Let’s assume that 
edges from node 1 to node 2 and node 2 to node 4 are based on extremely good data and have 
been estimated to have a probability of 0.9 of being correct.  The remaining edges are low 
confidence, each with a probability of 0.1.  We obviously have much greater confidence that 
the pathway uses node2 rather than node3.   

Let’s assign to each edge a weight that corresponds to the negative logarithm of the 
probability, as shown below.  

Graph Terminology 

• G=(V,E) 

• Undirected vs. directed 

• Weights – numbers assigned to each edge 

• Degree(v) – number of edges incident on v 

– In-degree and out-degree 

• Path from a to b is a series of vertices <a, v0, …, b> where edges 
exist between sequential vertices 

• Path length = sum of edges weights (or number of edges) on 
path. 
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Let’s assign to each edge a weight that corresponds to the negative logarithm of the 
probability, as shown below.  (I have used the natural log, but any base would be fine.)  Now, 
the edges that have high confidence have low weights and vice versa. 
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The length of the path 1->2->4 is 0.2, while the length of 1->3->4 is 4.6.  So the shortest path 
corresponds to the high confidence one.  In fact, by setting the weight of an edge to Wedge =–
log(Pedge), the sum of the weights corresponds to the product of the probabilities associated 
with each edge in the path.  Therefore, the shortest path will equal the most probable. 

There are a number of rapid methods for computing the shortest path on graphs.  For more 
information, see “Introduction to Algorithms” by Cormen, Leiserson, Rivest and Stein. 

Networkin 
The process begins with an experimentally determined phosphorylation site, such as those 
determined by mass-spectrometry and seeks to identify the kinase that modified it.  The 
sequence surrounding the site is scored using a library of dozens of motifs representing the 
substrate specificities of kinases.  Each top scoring motif is treated as representing a family of 
closely related potential kinases.  This family is identified by comparing the sequence of the 
kinase associated with the motif and all other kinases in the same species with the BLASTP 
program.  The result is a family of potential modifiers of the phosphorylation site.   
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How can we figure out which of these family members is the right one without detailed 
knowledge of the docking motifs, etc.?  The algorithm, called NetworKIN, relies on a database 
of probabilistically weighted functional associations between proteins organized in a graph.  
The graph is defined as a collection of vertices, or nodes, representing proteins and edges 
between vertices that represent physical interactions between the two connected vertices.   

The network uses several types of data to determine whether an edge exists between two 
vertices.  For example, the algorithm depends in part on curated databases that report well-
characterized enzymatic or signaling pathways.  However, these databases contain a very small 
fraction of all the interactions in the cell, and thus need to be supplemented with other types of 
data.  Additional data come from high-throughput experiments that report physical interactions 
(mass-spec and two-hybrid experiments), computational methods that attempt to 
automatically read the literature, and methods that examine gene expression data to find 
genes that are expressed under similar conditions.  Obviously, these data are not all equally 
reliable, and the algorithm associates each edge with the probability that the interaction is real.  
A graph with numbers associated with each edge is called a weighted graph. 

To find the most likely kinase for the target, NetworKIN computes the shortest path between 
the target and each potential kinase, where the length of the path is the sum of the weights 
associated with each edge in the path.  Since the network is weighted by the probabilities of 
interaction, this corresponds to the most probable set of interactions between the kinase and 
the substrate.  All the candidate kinases can then be ranked and the top few considered as the 
most likely.   

What is the value of this network based approach?  Consider the case of cyclin dependent 
kinase (CDK).  The sequence specificities of the CDKs are not diverse enough to uniquely 
identify the kinase responsible for targeting a protein.  However, there may be protein-protein 
interactions between both a CDK and a cyclin and between the cyclin and a target that strongly 
implicate one kinase over the others. This approach can be extremely valuable in generating 
hypotheses for the kinases responsible for phosphorylation changes observed in cells as they 
respond to various stimuli, including disease, toxins, or metabolic stress. 
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What are the limitations of such an approach?  Obviously, if the matrices used to predict kinase 
targets are wrong, the results will be unreliable.  In addition, there are likely to be some kinases 
with unknown specificities or specificities that differ from their homologs.  Equally important, 
the data underlying the interaction network has many sources of error.  These are usually 
classified by rates of “false positives”, proteins reported to interact that don’t, and “false 
negatives”, ones without edges in the graph that do interact.  Although it is usually possible to 
assess a false positive rate for high-throughput data, the rate of false negatives is usually 
unknown.  (Why?)  What are the effects of false positives and false negatives on the 
predictions?   

 

Other applications of network approaches 
We will not have time to discuss the many other applications of networks to biological 
problems.  Network modeling has also been used successfully to help with protein annotation.  
A large fraction of genes have no known function.  Earlier in the course we examined how 
sequence homology could be used to help solve this problem.  However, many proteins remain 
unannotated.  An alternative approach to determining protein function is sometimes referred 
to as “guilt by association.”  The idea is similar to that behind NetworKIN – proteins that are 

 

Protein-protein interactions can help identify a kinase-target pair.  All three kinases have the same 
specificity.  However, kinase #1 is linked to the target through protein-protein interactions with a cyclin and 
thus is the most likely to be responsible for phosphorylating the target. 
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functionally related will be closer to each other in the graph of known protein-protein 
interactions.  With the development of high-throughput methods of detecting protein-protein 
interactions based on mass-spectrometry and two-hybrid technology, there are now hundreds 
of thousands of reported protein-protein interactions.  Of course, not all of these are accurate. 

If you are interested, you might also take a look at some of the publications from my lab that 
use these methods to reconstruct unknown signaling and response pathways: 

Sources of Protein-Protein Interaction Data 
There are many experimental methods for measuring protein-protein interactions.  Professor 
White discussed some of these earlier in the semester.  Each type of experiment is associated 
with different sources of noise, leading to false positive and false negative interactions.  In 
lecture we discussed how non-specific binding in mass-spec experiments can be reduced by 
using TAP-tag purifications.  In this approach, a “bait” protein is connected to calmodulin 
binding protein, which is linked by a TEV protease site to Protein A.  The bait is bound to a solid 
support coupled to IgG.  After washing, one elutes with the highly specific TEV protease.  The 
eluate is then recaptured using calmodulin.  After more washes, the sample is then eluted using 
EGTA, which prevents the binding of calmodulin and calmodulin binding protein.  By using two 
highly specific and gentle elution steps (TEV protease and calmodulin), the protocol minimizes 
the number of proteins that are recovered simply because they are “sticky.”  Other sources of 
protein-protein interactions are yeast two-hybrid and protein complementation assays. 

Recently, there has also been success in predicting protein-protein interactions.  This is much 
harder than the predicting small molecule-protein interactions because of the potential 
structural rearrangements in the proteins.  Relevant papers include the following: Tuncbag et 
al. (2011) Nature Protocols 6:1341 and Zhang et al (2012) Nature 590:556. 
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