
 

 

 

 

 

 

 

 

 

 

Muscle mechanics outline 

• Types of muscle 
• Muscle anatomy 
• Function: macro, micro 
• Motor unit 
• Applications 

• Tissue engineering 
• Basic studies 
• Drug screening 
• Biobots 

• Other motile systems 
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Types of muscle:  
Skeletal (striated) and smooth muscle 

Gut, 
arterioles, 
sphincters 

Image by MIT OpenCourseWare.



Cardiomyocytes
 

Jan Lammerding
 

Dimensions ~ 
30x10 μm; 
Cross-sectional 
area ~ 300 μm2 

Total force = ??
 

Courtesy of Jan Lammerding, Harvard Medical School.

3



Skeletal muscle 


Figure of the structure of a skeletal muscle removed due to copyright restrictions.
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Detailed structure of a single skeletal muscle cell
 

Figure of the detailed structure of a single skeletal muscle cell removed due to copyright restrictions.
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Macro behavior: Temporal patterns of 
muscle contraction 

• Single twitch 
• Periodic sequence of excitations 
• Fused tetanus (Fmax) 

Figure removed due to copyright restrictions. l 
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 Tension-length curves for a muscle fiber (relaxed 
and maximally stimulated) 

Figure removed due to copyright restrictions.

l 
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Dynamic: Hill's equation 
Empirically determined force-velocity relationship 
obtained from macroscopic measurements 

Archibald Hill, Nobel Prize in Physiol, 1922. 

v 1− ( F F )max= 
v 1+ C F F )max ( max 

vF 1− ( F Fmax)= 
F) + CvmaxFmax ( Fmax 

σmax ~ 2 x 105 Pa 

v = velocity of shortening 
Figure removed due to copyright restrictions.
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Micro: The sliding filament model
in separate, back-to-back papers by A. Huxley & Niedergerke and H. 
Huxley & Hanson, Nature, 1954 

Phase contrast images of 
myobrils 

Source: Huxley, Hugh, and Jean Hanson. "Changes in the Cross-striations of Muscle during
Contraction and Stretch and their Structural Interpretation." Nature 173 (1954): 973-6.
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Thick and thin filaments slide past one 
another during contraction 

Figure of relaxed and contracted muscle removed due to copyright restrictions. See a similar image on wikipedia.
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https://en.wikipedia.org/wiki/Sliding_filament_theory#The_sliding_filament_theory


Skeletal muscle contains a regular array of actin and myosin
 

Figure removed due to copyright restrictions.
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 Videomicrograph of contracting muscle
 

Figure removed due to copyright restrictions.

12



 

  
 

    
  

     
 

    
     
     

 
 

      

 

 

Motor Speeds (assemblies) 

Motor type  speed in vivo (nm/s)  in vitro(nm/s)  in vitro ATPase (s-1) 

Myosin II (skeletal muscle)  6000  8000  20 
Myosin II (smooth muscle)  200  250  1.2 
Myosin V (vesicle transport) 200 350 5 

Conv. Kinesin (axonal transp)  1800 840 44 
Nkin (sec. Vesicle transp.) 800 1800 78 
BimC/Eg5 (Mitosis/meisos) 18 60 2 

Dyneins (cytoplasmic) -1100 -1250 2 

Speed in vivo = cell/extracts, motion of motor relative to filament w/o a load. Positive values 
indicate movement toward positive end of filament. 

Speed in vitro = purified motors at high ATP concentrations. 

ATPase = max rate of hydrolysis per head per sec, measured at high ATP, filament 
concentrations. 
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Forces generated by skeletal 
muscle 

Figure of relaxed and contracted muscle removed due to copyright restrictions. See a similar image on wikipedia.
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https://en.wikipedia.org/wiki/Sliding_filament_theory#The_sliding_filament_theory


 
Striated 
skeletal muscle 

Figure removed due to copyright restrictions.
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Structure of activating mechanism
 

Courtesy of Blausen.com staff. "Blausen Gallery 2014". Wikiversity Journal of Medicine. DOI:10.15347/wjm/2014.010. License: CC BY.
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https://en.wikipedia.org/wiki/T-tubule#/media/File:Blausen_0801_SkeletalMuscle.png
www.blausen.com


Figure removed due to copyright restrictions.
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Figure removed due to copyright restrictions.
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A rise in cytosolic Ca2+ triggers muscle contraction
 

© source unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

Step 1: An excitation signal travels along the efferent nervous 

pathways towards the muscle. 

Step 2: The excitation signal de-polarizes the cell membrane. 

This allows spread of the action potential along the 

sarcoplasmic reticulum. 

Step 3: The potential triggers the release of calcium into the 

sarcoplasmic matrix surrounding the filaments of the motor 

unit. 

Step 4: This removes the hindrance (tropomyosin) for 

interactions between actin and myosin filaments through 

chemical, mechanical, and electrostatic actions. 

Step 5: The stepping action of myosin along the adjacent 

actin filament causes the two to slide relative to each other, 

reducing the length of the sarcomere, producing contraction. 

Step 6: Sequestration of calcium ions in the sarcoplasmic 

reticulum (ATP-dependent) switches the contraction activity off.
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Figure removed due to copyright restrictions.
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Figures removed due to copyright restrictions.

http://www.sci.sdsu.edu/movies/actin_myosin.html  
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http://www.sci.sdsu.edu/movies/actin_myosin.html
http://www.sci.sdsu.edu/movies/actin_myosin.html


 Living Machines: Simple Biobots 
Chan, Sci Reports, 2012 

Figure removed due to copyright restrictions.

Williams et al., 
Nat Comm, 2014 

© The authors. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Chan, Vincent, et al. "Development of Miniaturized Walking Biological Machines."
Scientific Reports 2 (2012).

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Nawroth, Janna C., et al. "A Tissue-engineered Jellyfish with
Biomimetic Propulsion." Nature Biotechnology 30, no. 8 (2012): 792-7.

Naworth et al., Nat Biotech, 2012
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 Courtesy of Mary Ann Liebert, Inc.
Used with permission.
Source: Boudou, Thomas, et al. "A
Microfabricated Platform to Measure
and Manipulate the Mechanics of
Engineered Cardiac Microtissues."
Tissue Engineering Part A 18, no.
9-10 (2011): 910-19.

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Courtesy of Christopher S. Chen. Used with permission.
Source: Legant, Wesley R., et al. "Microfabricated Tissue Gauges to
Measure and Manipulate Forces from 3D Microtissues." Proceedings
of the National Academy of Sciences 106, no. 25 (2009): 10097-102.
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http://ocw.mit.edu/help/faq-fair-use/
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Courtesy of MIT. Used with permission.
Source: Sakar, Mahmut Selman, et al. "Formation and Optogenetic Control of
Engineered 3D Skeletal Muscle Bioactuators." Lab Chip 12, no. 23 (2012): 4976.
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http://hdl.handle.net/1721.1/87708
http://hdl.handle.net/1721.1/87708
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•  Channelrhodopsins are light-activated ion channels 

(discovered in green algae that respond to light).
•  Can be used to activate neurons or muscle.

© A2-33. License: CC BY-SA. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

© Millencolin. License: CC BY-SA. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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https://en.wikipedia.org/wiki/Channelrhodopsin#/media/File:3ug9.png
https://commons.wikimedia.org/wiki/File:ChR2scheme.png
http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/


Light-sensitive cardiomyocytes 
demonstrate coordinated actuation 

Te
ns

io
n 

(μ
N

) 

Time (ms) 

[Sakar et al. 2012] 

Courtesy of MIT. Used with permission.
Source: Sakar, Mahmut Selman, et al. "Formation and Optogenetic Control of
Engineered 3D Skeletal Muscle Bioactuators." Lab Chip 12, no. 23 (2012): 4976.
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Optogenetic control of mESC-derived motor neurons 
Homologous recombination FACS sorting Pluripotency and ChR 

expression validation

CAG ChR2-
H134R

TdTomato WPRE bGHpA

Rosa26
locus

mESC 
(GFP - Hb9) 

Homologous 
recombination

Oct4 

ChR 

Motor neuron differentiation

phase

Hb9 - GFP ChR - Tdtom

Dissociated 
motor neurons 

plated on 
astrocytes

Optogenetic control of the motor neurons

500 pA

1000 ms

5 Hz

10 Hz
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μFluidic device for neuromuscular co-culture
Medium channel

Gel regionsVacuum channel
GFP (pHb9)

Alexa 633-BTX

overlay

Motor axons

AChR clusters

Microfluidic platform Coculture schematic Evidence of 
formation of NMJ

Confocal reconstruction of the 
3D innervation process

Assessment of functional NMJ by 
neuron-triggered contraction

On-target stimulation Off-target stimulation

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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3D axon outgrowth

900 μm 
neuro 
sphere 

Confocal imaging allowed for the verification of the 3D outgrowth of the motor axons 

 muscle
 strip

gel 

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Optogenetic control of the NMJ in 3D 
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After addition of BTX 

phase 

HB9-GFP 

neuro 
sphere 

muscle strip 
gel 

500 µm 

1 s 
0.5 μN 

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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What you should know 
•  Gross and microscopic structure of muscle 
•  Different types of muscle 
•  Twitch, summation and tetanus 
•  Sarcomeric structure and striations 
•  Sliding filament theory – basic concepts 
•  Forces generated 
•  Connecting micro and macro behavior 
•  Events during cross-bridge cycling 
•  Mechanisms of muscle activation and control 
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