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G ' (Pa)
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Relation (an approximation):
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Three microstructural models for

the cytoskeleton
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Cellular solids Tensegrity
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Cellular Solids Model
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Solid fraction, ®

@~ (a/L)? (solid fraction)

6 ~ FL?/(E, 1) from bending analysis
where | ~ g4

o~ F/L?

e~ o/l

E, =0/ =c,Ed/L* (network modulus)
E,/Ef= c, @ orG, "‘Ef(D?

a = radius of filaments



Tensegrity Model

> F/2 F/2
A b 5— __—
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Deformation
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L Compression
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Work done = A (stored elastic energy)
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Tensegrity Model
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L F/2 F/2
T Tension
_ / members
Deformation
/ See Stamenovic
Compression for a full
members . .
derivation.

_ 0P 1+4¢,
! 3 1+12¢,

Or, in the limit of €, 0,

Where 0y, is the G~ O3

prestress in the where 0, 1s the pre-stress
individual tensile in the tensile elements per
elements and ¢ 1s the unit total cross-sectional
initial strain in each. area (0,,=70a’/L?).
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Biopolymer
Models

[, = persistence length

[ = distance between entanglements or
cross-links

& =filament spacing (pore size)
g, = network strain
E, = network elastic modulus

0 = change in distance between
entanglements/cross-links

® = solid fraction

For a single segment of polymer
between cross-links (Isambert
and Maggs, 1997, Maggs, 1999,
Storm, et al., 2005)

[ P K S
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Scaling behaviors for the three models
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n

Predicts a linear dependence on prestress

Athermal |
No ability to change cross-link density © Springer-Verlag. All rights reserved. This content is
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Source: Stamenovié, D., and Donald E. Ingber. '|Models
pf Cytoskeletal Mechanics of Adherent Cells." Biomechanics

Ce”ular SOIldS and Modeling in Mechanobiology 1, no. 1 (2002): 95-108.

Viscoelasticity?

Filament bending stiffness dominates
Maximal cross-link density

Athermal

No role for cross-link mechanics

Viscoelasticity?

Biopolymer
Thermal (WLC at high extensions)

Viscoelastic. Captures % power law at high
frequency

Cross-link density and mechanics?
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Computational Models of the Cytoskeleton

* Individual monomers and cross-
linking proteins self assemble into

a 3D network

 Motors can be added to simulate
the effects of myosin Il

* Networks are thermally active,
fully 3D and exhibit many of the
characteristics of cells and actin
gels

* Mechanical properties such as G/, _ _ _ |
” . © source upknown. All nght; reservgd. This conte.ntls exclgded from our Crgatlve
G a nd generated Inte rnal St ress Commons license. For more information, see pttp://ocw.mit.edu/help/fag-fair-use/.
can be readily computed.

Kim, et al., PLoS Comp Biol, 2009
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Take home messages

Cells exhibit a weak power-law rheology

With increasing strain: linear, strain-stiffening, strain
softening

Fluidization (role of cross-links?)

Simulations show that tensed networks are consistent with
much of the observed static behavior

Cytoskeletal networks behave athermally, and cross-link
rupture appears to be more important than unfolding in
network fluidization and remodeling

Motor activity is a significant determinant of network
morphology

Motors induce prestress and thereby actively control
cytoskeletal stiffness

10



Membrane
mechanics:

Micropipette
Aspiration

Measurements suggest a
model consisting of a viscous
core and a membrane of
constant surface tension.

© source unknown. All rights reserved. This contentis excluded from our Creative
Commons license. For more information, see pttp://ocw.mit.edu/help/fag-fair-use/.
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arachidic

B. Alberts et al. (2004)

A fatty acid molecule (left)
and aggregation of phospholipids
to form a cell membrane (below)

hydrophilic
head

phospholipid
bilayer,
or membrane

two
wydrophobic
fatty acid
tails

U

phospholipid molecule

© source unknown. All rights reserved. This contentis excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Attractive: hydrophobic tails.

Repulsive: hydrophilic heads, ionic groups, steric

effects.
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Figure 11-4 removed due to copyright restrictions.
Source: Nelson, David L., et al. Lehninger Principles of Biochemistry. Macmillan, 2008.

D. L. Nelson and M. M. Cox (2005)

Image of lipid bilayer removed due to copyright restrictions.

H. Lodish et al. (2004)
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Lipid bi-layer
Ch a ra Cte ri Sti CS Figure 11-1 removed due to copyright restrictions.

Source: Nelson, David L., et al. Lehninger Principles of Biochemistry. Macmillan, 2008.

Thickness ~ 5 nm

Normal (resting) tension ~ 0.01 mN/m
Maximum areal strain ~4%

Rupture tension ~10 mN/m

(Surface tension of water ~ 70 mN/m)

(1 mN/m =1 dyn/cm)

D. L. Nelson and M. M. Cox (2005)



Red blood cells

(erythrocytes) O ;

Uniform, disc-shaped normal
erythrocyte —_—

Red Blood Cells

Illustration courtesy of Blausen.com staff. "Blausen Gallery 2014". Wikiversity Journal
of Medicine. DOI:10.15347/wjm/2014.010. ISSN 20018762. CC license BY.

Images of red blood cell membrane removed due to copyright restrictions. Molecular Biology of the

Source: Alberts, B., et al. Molecular Biology of the Cell. 4th ed. Garland Science, 2002. Cell, Bruce Alberts, Dennis
Bray, Julian Lewis, Martin
Raff, Keith Roberts, James
D. Watson © 1994
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White blood cells (leukocytes)

Images removed due to copyright restrictions.

Scanning electron micrographs showing a) an intact "passive" neutrophils with many membraneous folds and

microvilli and b) a neutrophil that has been treated with 4 M-5M Triton-X to dissolve away the membrane and
leave the underlying cytoskeleton in the exposed cortical region.

|http://mems.egr.duke.edu/FacuIty/rhochmuth.htmI
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Homogeneous??
Cells in 3D matrix

Images removed due to copyright restrictions.

MDA-MB-231 breast cancer cells migrating

inside a collagen gel.

* Dense cortical actin with myosin.

* Cross-linkers more homogeneously
distributed

Rajagopalan, unpublished
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Indentation by a microsphere
Importance of the cortex

) Photadiode detector an

Laser-light path ® '“I'z“ -
"‘._ ";' ® : 2,
v = \.’,.‘ ¥
Fluorescent bead «2 y

v Cantilever
X _

Coverslip

o

Befare

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Moeendarbary, Emad, et al. "]|'he Cytoplasm of Living Cells Behaves
|as a Poroelastic Material." Nature Materials 12, no. 3 (2013): 253-61.
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Force balance In
the x5 direction

N,(x, +dx)
h
V=] 0, V.(x, +dx,)

pdx, =V, (x,)— N,(x,)0(x,)+V,(x, +dx,)+ N,(x, + dx,)0(x, + dx,) =0

Use Taylor expansions for V, and N, 6,

Vi(x, +dx))= Vl(xl)+?dx

X

Combine and divide by dx;:

avV, 9d V. o ou
i 2 (NG)= L 2N |2 |=0
P+ ox, i ox, ( : 1) P+ ox, " ox, { I[le ﬂ

19



Moment (torque) balance about the x, axis

Vi (x))
x2 M, (x)) (
& M(x1+dx)
M (x)+(M +aM1d )—V,(x, +dx,)d
1 (X 1 ox, X1 AT ax)ax; = Vi(x + dxl
BM ) dx, .
- =Vi(x)
ox,
- 0°u
M (x,)=-K S
() axf

20



Full governing equations for linear deformations, and the reduced forms for bending
or tension dominance
Bending stiffness Membrane tension
4 2
. J'u; | N Jd u,
b 8 4 &) 2
X1 X1

/ \

Bending Kjul/A* K,

Tension Nu/A> NA? NA?

/ \

u = displacement p = pressure difference N = membrane tension

R =radius of curvature x = spatial coordinate =~ A= characteristic length
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