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The cytoskeleton as a homogeneous,
Isotropic, elastic material.
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Fig. 1. The cytoskeleton of a macrophage lamellipodium
as seen by electron microscopy. The fibrous structure is
mainly comprised of actin filaments. (John Hartwig,
http://expmed.bwh.harvard.edu)
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Cellular Solids Model
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@~ (a/L)? (solid fraction)

6 ~ FL3/(E, 1) from bending analysis
where | ~ g*

o~ F/l?

e~ o/l

E,=0/e=c,Ed/L* (network modulus)
E/E;=c, @ orG,~E, @’

a = radius of filaments
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A universal set of building rules sébms to guide
the design of organic structures—from simple

carbon compounds to complex cells and tissues
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ife is the ultimate example of complexity at work. An
organism, whether it is a bacterium or a baboon, de-

velops through an incredibly complex series of in-
teractions involving a vast number of different components.
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hibit their own dynamlc behavior, such as the ability to cat-
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Don Ingber, Scientific American somelarge  Finally, more philosophical questions arise: Are these

newandw hyilding principles universal? Do they apply to structures
ity to mow
that are molded by very large scale forces as well as small-
scale ones? We do not know. Snelson, however, has proposed
an intriguing model of the atom based on tensegrity that takes

1923. Fuller himself went so far as to imagine the solar sys-
tem as a structure composed of multiple nondeformable rings
of planetary motion held together by continuous gravitational
tension. Then, too, the fact that our expanding (tensing) uni-
verse contains huge filaments of gravitationally linked galaxies
and isolated black holes that experience immense compres-
sive forces locally can only lead us to wonder. Perhaps there
is a single underlying theme to nature after all. As suggested
by early ZUth-century Scottish zoologist D'Arcy W. Thompson,
who quoted Galileo, who, in turn, cited Plato: the Book of Na-
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Tensegrity Model
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Biopolymer
Models
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[, = persistence length

[ = distance between entanglements or

cross-links

&=filament spacing

g, = network strain

E, = network elastic modulus

0 = change in distance between
entanglements/cross-links

® = solid fraction

density

Maximum
cross-link
density (/~¢&)

Low cross-link

For a single segment of polymer
between cross-links (Isambert
and Maggs, 1997, Maggs, 1999,
Storm, et al., 2005)
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n = filament density
|, = persistence length
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The mnitial shear modulus is given by
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n = # filaments/vol = @/(a’L )


http://dx.doi.org/10.1016/j.actbio.2007.12.007
http://dx.doi.org/10.1016/j.actbio.2007.12.007
http://www.sciencedirect.com

Scaling behaviors for the three models

Tenseqrity

Predicts a linear dependence on prestress (alone!)

Athermal
No ability to change cross-link density
No role for cross-link mechanics

Viscoelasticity?

Not valid in the limit of zero prestress

Cellular Solids

Filament bending stiffness dominates

Maximal cross-link density
Athermal

No role for cross-link mechanics
Viscoelasticity?

Biopolymer

Thermal (WLC at high extensions)

Viscoelastic. Captures % power law at high

frequency
Cross-link density and mechanics?
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