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Biomechanics in the news:
Mechanism of the microtubule motor dynein
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Many different cell types with
different structure
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Cell mechanics: Structure

|Transmission electron micrograph showing pituitary
cell removed due to copyright restrictions.
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Super-resolution imaging of cytoskeletal structures

Figure 3 | Sheet-like cell protrusion comprises
two layers of actin networks with distinct
structures. (a) Dual-objective STORM image

of actin in a BSC-1 cell. The z positions are
color coded (color bar). (b,c) Vertical cross
sections (each 500-nm wide in x or y) of cell in
a along dotted and dashed lines, respectively.
When far from cell edge, z position of dorsal
layer increases quickly and falls out of imaging
range. (d,e) The z profiles for two points

along vertical section (red and yellow arrows — \ O %100 50 0 50 ¢ s0-100 50 © 0
in b, respectively). Each histogram is fit to 1 ; z fom) = e
two Gaussians (red curves), yielding apparent ‘
thickness of ventral and dorsal layers and

peak separation between the two layers.

(f) Quantification of apparent thickness
averaged over two layers and dorsal-ventral
separation obtained from x-z cross-section
profile in b. (g,h) Ventral and dorsal actin
layers of cell in a. (i,j) Ventral and dorsal actin
layers of a COS-7 cell treated with blebbistatin.
(k,l) Vertical cross sections {(each 500-nm wide
in x ory) of cell along dotted and dashed lines,
respectively. (m) Actin density of ventral and
dorsal layers along yellow box in 1,j, measured
by localization density. Scale bars, 2 um (a,g-j);
100 nm forz and 2 um forx and y (b,c. k).

Trickness (nm)
A

We observed two vertically separated actin
layers in the sheet-like cell protrusion
despite its small thickness (Fig. 3a-c).
The apparent thickness of each layer was

Courtesy of Macmillan Publishers Limited. Used with permission.
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Actin/spectrin structure in axons

Figure 4 removed due to copyright restrictions.
Source: Xu, Ke, et al. "lActin, Spectrin, and Associated Proteins form a Periodic
[Cytoskeletal Structure in Axons." Science 339, no. 6118 (2013): 452-6.
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Primary
structural
fllaments of the
cytoskeleton

Actin (phalloidan)
microtubules (FITC),
nuclei (DAPI)
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Diameter (nm)  Persistence Bending Young's
length (um) stiffness (Nm?)  modulus (Pa)
Actin filament ~ 6-8 15 7x107 1.3-2.5x10°
Microtubule 25 6000 2.6x107% 1.9x10°
Intermediate 10 1-3 4-12x107 2-5x10°
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Mechanical
factors in integrin
adhesion

Figures 1 & 2 removed due to copyright restrictions.
Source: Roca-Cusachs, Pere, et al. 'Finding the Weakest Link-exploring Integrin-mediated
[Mechanical Molecular Pathways." Journal of Cell Science 125, no. 13 (2012): 3025-038.
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Fluctuations of an actin filament

scale bar = 10 microns

Courtesy of the authors. License: CC BY-NC-SA.
Source: Gittes, Frederick, et al. "Flexural Rigidity of Microtubules and Actin Filaments Measured
|from Thermal Fluctuations in Shape." The Journal of Cell Biology 120, no. 4 (1993): 923-34.
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Actin microfilaments

Image of G-actin monomers polymerizing into F-actin
filaments removed due to copyright restrictions.

Courtesy of John Hartwig. Used with permission.

Structure of actin. Image courtesy of Dr. Willy Wriggers.

Used with permission.
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Cytoskeletal
structure

Figure 1 removed due to copyright restrictions.
Source: Hirokawa, Nobutaka. "kinesin and Dynein Superfamily Proteins and the
IVIechanism of Organelle Transport." Science 279, no. 5350 (1998): 519-26.
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Actin filament and microtubule

dynamics — FSM (fluorescent
speckle microoscopy)

Salmon, et al., J Cell Biol, 158:31-37,
2002

Courtesy of the Journal of Cell Biology. License CC BY-NC-SA 3.0 Unported.
Source: Salmon, Wendy C., et al. "Pual-wavelength Fluorescent Speckle Microscopy Reveals Coupling of Microtubule
fpnd Actin Movements in Migrating Cells." The Journal of Cell Biology 158, no. 1 (2002): 31-37.
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Tumor microenvironment governs cell migration
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Forces on a single tumor cell during
interstitial flow

© source unknown. All rights reserved. This contentis excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.


http://ocw.mit.edu/help/faq-fair-use/

Interstitial flow alters tumor migration
characteristics

Flow

Courtesy of Roger Kamm. Used with permission.

Source: Polacheck, William 1., et al. "Mechanotransduction of Fluid Stresses Governs 3D Cell
|Migration." Proceedings of the National Academy of Sciences 111, no. 7 (2014): 2447-52.

Polacheck et al., PNAS, 2012 .
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Various methods used to probe cell
mechanics

Bao & Suresh, 2003

Soft membrane
Courtesy of Nature Publishing Group. Used with permission.

Source: Bao, Gang, and S. Suresh. "tell and Molecular Mechanics
|of Biological Materials." Nature Materials 2, no. 11 (2003): 715-25.
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Experiment #1:
Indentation

Neutrophils
(Zahalak et al., 1990)
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Indentation experiment on sponge
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Indentation Experiment

Water volume [ml)

Sponge height [cm]
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DRY sponge

Change in height

0
0
0.5
0.5
0.5
0.6
0.8
1
14
14
1.7
2
2.2

Force (N)

0.49
0.98
1.47
1.96
2.45
2.94
3.92

4.9
5.88
6.86
7.84
8.82



Cell Squashing - __&
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Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: Caille, Nathalie, et al. “Fontribution of the Nucleus to the Mechanical Properties

[of Endothelial Cells." Journal of Biomechanics 35, no. 2 (2002): 177-87.
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Simple Display System of Mechanical Properties of Cells

and Their Dispersion

March, 2012
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Courtesy of the authors. License: CC BY.
Source: Shimizu, Yuji, et al. "Simple Display System of Mechanical
Properties of Cells and their Dispersion." PloS ONE 7, no. 3 (2012).
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Population averaged force-relaxation curves showed similar
trends for both HeLa and MDCK cells, with a rapid decay in the first
0.5 s followed by slower decay afterwards (Fig. 1d(I)). In Fig. 1d(II),
we see that force—relaxation clearly exhibited two separate regimes:
a plateau lasting ~0.1-0.2 s followed by a transition to a linear
regime (Fig. 1d(I)). Hence, at short timescales, cellular force—
relaxation does not follow a simple power law. Comparison with
force—relaxation curves acquired on physical hydrogels****, which
exhibit a plateau at short timescales followed by a transition to a
second plateau at longer timescales (Supplementary Fig. S3A,B),
suggests that the initial plateau observed in cellular force-relaxation
may correspond to poroelastic behaviour. Indeed poroelastic

Before

M

Photodiode detector

Laser-light path

" | vz
 J
Fluorescent bead &%

Cell

an

Coverslip

m
6 + Hela
— MDCK

5 \

4 1 il n=5Hela cells

Py I

&)

S
1 T T T T T T T T T

I
0.0 0.5 1.0 1.5 2.0 2.5
Time (s)

an

Force (nN)

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Moeendarbary, Emad, et al. "I'I'he Cytoplasm of Living Cells Behaves
las a Poroelastic Material." Nature Materials 12, no. 3 (2013): 253-61.

\ Cantilever

Hela
27 MDCK
Power-low fit
—— Poroelastic fit
.l T T T TTTTI0T T T T TTTTIT T T T TTTTIT T T
0.001 0.01 0.10 1.00
Time (s)

24


http://dx.doi.org/10.1038/nmat3517
http://dx.doi.org/10.1038/nmat3517

Homogeneous??
Cells in 3D matrix

Figures removed due to copyright restrictions.

MDA-MB-231 breast cancer cells migrating

inside a collagen gel.

* Dense cortical actin with myosin.

* Cross-linkers more homogeneously
distributed

Rajagopalan, unpublished

25



Figure 3 | Sheet-like cell protrusion comprises
two layers of actin networks with distinct
structures. (a) Dual-objective STORM image

of actin in a BSC-1 cell. The z positions are
color coded (color bar). (b,c) Vertical cross
sections (each 500-nm wide in x or y) of cell in
a along dotted and dashed lines, respectively.
When far from cell edge, z position of dorsal
layer increases quickly and falls out of imaging
range. (d,e) The z profiles for two points

along vertical section (red and yellow arrows
in b, respectively). Each histogram is fit to
two Gaussians (red curves), yielding apparent
thickness of ventral and dorsal layers and

peak separation between the two layers.

(f) Quantification of apparent thickness
averaged over two layers and dorsal-ventral
separation obtained from x-z cross-section
profile in b. (g,h) Ventral and dorsal actin
layers of cell in a. (i,j) Ventral and dorsal actin
layers of a COS-7 cell treated with blebbistatin.
(k,l) Vertical cross sections (each 500-nm wide
in x or y) of cell along dotted and dashed lines,
respectively. (m) Actin density of ventral and
dorsal layers along yellow box in 1,j, measured
by localization density. Scale bars, 2 um (a,g-j);
100 nm forz and 2 um forx and y (b,c. k).

We observed two vertically separated actin
layers in the sheet-like cell protrusion
despite its small thickness (Fig. 3a-c).
The apparent thickness of each layer was
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Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Xu, Ke, et al. “Dual-objective STORM Reveals Three-dimensional Filament
prganization in the Actin Cytoskeleton." Nature Methods 9, no. 2 (2012): 185-8.

|http://www.nature.com/nmeth/video/moy2008/index.htmI

26


http://dx.doi.org/10.1038/nmeth.1841
http://dx.doi.org/10.1038/nmeth.1841
http://www.nature.com/nmeth/video/moy2008/index.html

Elastic or viscoelastic??
Micropipette Aspiration

Cells are viscoelastic
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Properties by Cell Poking, with an Application to Leukocytes." Journal

of Biomechanical Engineering 112, no. 3 (1990): 283-94.

(Zahalak et al., 1990)
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