
OPTICS AND Optical Instrumentation 

Optical imaging is the manipulation of light to elucidate the structures of objects 

History of Optics 
Optical Instrumentation – light sources 
Optical Instrumentation – detectors 
Physical Optics 
Optical Instrumentation – intermediate optics 



A Historical Snap Shot of Optical Study


The study of light has a long history dating back to far antiquity.  Optical 
microscope was first invited in the 16 century. However, we will focus on 
the beginning of 20th century where there are two class of thoughts about 
the physical properties of light. 

Wave Nature of Light -- Huygen Particle Nature of Light -- Newton 

Figures from Wikipedia.



History of Optical Studies


The advent of quantum mechanics allows us to understand that light has both 
wave and particular properties 

Planck – quantization of black 
body radiation 

Courtesy of the Clendening History of Medicine
Library,University of Kansas Medical Center. 0
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Figure by MIT OCW.



History of Optical Studies


The advent of quantum mechanics allows us to understand that light has both 
wave and particular properties 

Bohr – Resolve wave-particle duality 
of light 

Niels Bohr debating quantum theory
with Albert Einstein.Photo by
Paul Ehrenfest (source: Wikipedia).
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A typical biomedical optics experiment


Light source 

Detector 

Intermediate 
Optics 

Specimen 



Physical Principle of High Sensitivity Optical Detectors


High sensitivity photodetectors today are mainly based on two physical processes: 

(1) Photoelectric effect 

(2) Photovoltic effect 

One can detect light by other processes such as heating. 
Power meter for laser light is called a thermopile and is based 
on heating by light – not very sensitive 



Photoelectric Effect


First observed by Becquerel in 1839, he observed current in conductive 
solutions as electrode is exposed to light 

Theoretically explained by Einstein: An electron knocks out of a material 
by a photon. It is one of the major evidence in the quantization of light. 

hn = f + Ek 

f is the work function characterizing the barrier in the material for electron 
Ejection. Ek is the kinetic energy of the ejected electron. 

The kinetic energy depends only on the color (energy) of the photon 

but not light intensity (number of photons)


The number of electrons ejected is proportional to the number of photons 



Photovoltic Effect 

QM predicts that the electrons in a periodic lattice occupy energy bands 
that has gaps. 



Photovoltic Effect II


Photovoltic effect: 
Electron, hole generation 
in semi-conductor 
material by light 



                 

Signal and Noise in Optical Detection


Signal – the amount of light incident upon the detector per unit time 

n is the number of photons detected per unit time 

Dt is the data acquisition time 

< I >= anq / Dt 
-

q is the electron charge= 1.6·10 19 
C 

(1A = 1C/sec) 

a is a gain factor of the detector 

Noise – the “disturbance” on the signal level that hinders an accurate measurement 



 

Signal-to-Noise Ratio and Noise Equivalent Power 

Signal: S =< I >2 R 

SNR: Signal power/Noise power = S/N 

NEP: Signal power at which SNR = 1 



Source of Noise in Optical Detectors


(1) Optical shot noise (Ns) –

inherent noise in counting a finite number of photons per unit time


(2) Dark current noise (Nd) –

thermally induced “firing” of the detector 


(3) Johnson noise (NJ) –

thermally induced current fluctuation in the load resistor


Since the noises are uncorrelated, the different sources of noise add in quadrature 

N 2 � NS 
2 + Nd 

2 + NJ 
2 



Optical Shot Noise


Photon arrival at detector are statistically independent, “uncorrelated”, events 

What do we meant by uncorrelated? 

1 T / 2 

Lim � (n(t +t ) - n)(n(t) - n))* =< Dn(t +t )Dn*(t) >= 0 t „ 0 
T fi¥ T -T / 2 

(* denotes complex conjugate) 

Although the mean number of photons arriving per unit time, l, is constant on average, 
at each measurement time interval, the number of detected photons can vary. 

The statistical fluctuation of these un-correlated random events are characterized 
by Poisson statistics. 



    

Poisson Statistics


If the mean number of photon detected is n , the probability of 
observing n photons in time interval t is: 
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Spectrum of Possion Noise I


¥ 

D 
~ 
I ( f ) = � DI (t)e -i2pft dt where DI (t) = qDf (n(t) - n) 

-¥ 

Assume photon number is Poisson distributed


Power spectral density: P 
~( f ) = RDfDI 

~*( f )DI 
~( f )


Noise power: N 
~( f , Df ) = P 

~( f )Df


The power spectral density can be evaluated in a slightly round about way by 
considering the autocorrelation function: 

¥ 

Autocorrelation function: g (t ) = RDf �DI (t +t )DI (t)*dt 
-¥ 

Because the event of Poisson process is completely independent of each other 

g(t ) = Rs I 
2d (t ) / Df




Spectrum of Poisson Noise II


d (t ) is the Dirac-Delta function with the following properties: 


It has the unit of frequency 

d (0) = ¥; d (t) = 0 for t „ 0


�d (t)dt =1; � f (t)d (t -t )dt = f (t )


From Poisson process: s I 
2 = 2aqDf < I > 

Factor of 2 account for positive and negative frequency bands 

The autocorelation function of Poisson noise is: 

g(t ) = 2Raq < I > d (t ) 



Spectrum of Poisson Noise III 

¥ 

Wiener-Khintchine Theorem: P 
~( f ) = � g(t )e -i2pft dt 

-¥
Let’s why Wiener-Khintchine theorem is true: 
¥ ¥ ¥ 

g(t )e -i2pft dt = RDf [ DI (t +t )DI (t)dt]e -i2pft dt� � � 
-¥ -¥ -¥ 

¥ ¥ 

� � -i 2pft= RDf [ DI (t +t )e dt ]DI (t)dt 
-¥ -¥ 
¥ ¥ 

= RDf [ DI (t ' )e -i2pft ' dt ' ]e+i2pftDI (t)dt� � 
-¥ -¥ 

t ' = t +t , dt ' = dt 
¥ ¥ 

= RDf [ �DI (t ' )e -i 2pft ' dt '][ �DI (t)e+i 2pftdt] 
-¥ -¥ 

= RDfD ~ I ( f )DI ~( f )* 

Fourier transform of the autocorrelation function is the power spectral density




Spectrum of Possion Noise IV


¥ 

P 
~( f ) = � 2Raq < I > d (t )e -i2pft df =2Raq < I > 

-¥ 

ft 

Poisson noise has a “white” spectrum 

Noise in a given spectral band: 

~ 
N( f ,Df ) = 2Raq < I > Df 



Photon Shot Noise


The origin of the photon shot noise comes from the Poisson statistics of 
the incoming photons itself 

The shot noise power is: 

N~ 
s ( f , Df ) = 2Raq < I > Df Log(S/N) 

The signal power is: S =< I >2 R 

< I > aqn / Dt 2aqnDf
SNR = = = = n 

2aqDf 2aqDf 2aqDf 

Used sampling theorem: 1/ Dt = 2Df


A detector is consider to be “ideal” if it is dominated by just shot noise.



