Drug Metabolism 2

Steven R. Tannenbaum 20.201
September 2013

Conjugation Reactions

- "Phase II" biotransformations attach a hydrophilic moiety onto drug/metabolite. The resulting product is too polar to re-cross membranes back into tissues and is readily excreted.
- These type of reactions most often abolish biological activity

Chemistry

 Unlike P450, Phase II reactions are concerted reactions that involve an electrophile (Y), a nucleophile (X) and a leaving group (L)

$$R-XH+Y-L\longrightarrow \begin{bmatrix} R-XH+Y-L \end{bmatrix}\longrightarrow R-X-Y+LH$$

- These reactions involve a pair of electrons, i.e., no radical intermediate
- Electron donating groups enhance nucleophilicity of substratefavors reaction whereas, electron withdrawing groups decrease nucleophilicity-hinders reaction

Types of Conjugation Reactions

- Glucuronidations (UGTs)
- Sulfations (STs)
- Glutathione transferases (GSH, GST)
- Methylations
- Acetylations
- Amino acid conjugations

Uridine Diphosphoglucuronic Acid Transferases (UGT)

- UGTs are a family of enzymes, with two groups (UGT1A and UGT2B)
- Found in same tissues as P450, microsomal
- Uses uridine-5'-diphospho- α -D-glucuronic acid (UDPGA) as a cofactor
- One of the most common conjugative reactions
- Catalyze the glucuronidation of electron-rich nucleophilic heteroatoms/sites
 - Alcohols (ROH)
 - Phenols (phenolic hydroxy groups, Ar-OH)
 - Carboxylic acids (R-COOH)
 - Aromatic Amines (Ar-NH₂ or Ar-NHR)
 - Tertiary amines (R₃-N)
 - Sulfhydryl groups (R-SH)
 - Carbons w/ sufficient nucleophilicity

Glucuronidation Reaction

Xenobiotics that are Glucuronidated

Sulfotransferases (ST)

- STs are a family of enzymes with five members (SULT1-5, SULT1 and 2 are most important in the metabolism of drugs
- Found in liver, kidney, intestine, in cytosol
- Catalyze the sulfation of
 - Alcohols (R-OH)
 - Phenols (main group of substrates, Ar-OH)
 - Arylamines (Ar-NH₂)
 - N-hydroxy compounds (R-NH-OH)
- Cofactor (3'-phosphoadenosine-5'-phosphosulfate, PAPS) is in limited supply, drug can overwhelm the system
- Low activity in some individuals thought to be the cause of wine induced headache

Sulfation Reaction

Xenobiotics that are Sulfated

Minoxidil Produces hair growth

 $\dot{N}H_2$

Active metabolite responsible for its effects

Image by MIT OpenCourseWare.

$$HO_2C$$
 N
 HS
 O
 N
 CO_2H
 NH_2
 N

Glutathione Transferases (GST)

- Family of enzymes (2 microsomal and 7 cytosolic)
- Referred to as an "electrophile killing" enzyme
- Uses reduced glutathione (GSH) as a cosubstrate; Cysteine sulfhydryl group is the nucleophilic (attacking) moiety

- Glutathione can exist in a reduced form (GSH) or can be oxidized to a dimer (GSSG) via a disulfide bond
- GST catalyze the reaction of GSH with electrophiles
 - GSH is reactive on its own; the enzyme holds the substrate in place for an increased reaction rate

Glutathione Conjugation:

Glutathione Transferase Reaction

$$HO_2C$$
 N
 H
 N
 CO_2H
 NH_2

Michael Reaction

$$R_1SH$$
 + R_2 R_1 R_2 R_1 R_2 R_1 R_2 R_3 R_4 R_4 R_5 R_4 R_5 R_5 R_6 R_7 R_8 R_8 R_8 R_8 R_8 R_8 R_8 R_9 R_9

Important Points

- Most often, metabolic activation is a result of Phase I (oxidation or reduction) metabolism
- Phase II metabolism can also play a role in metabolic activation
- Metabolic activation could involve one enzyme or could be a result of multiple enzymes

Reactive Intermediates

How stable?
How far can they diffuse?
Organ to Organ transport
(heart to lungs=4.3s)

HO· ~ 10(-9) s 1 bond length ArNH+ 10(-6 to -4) s within cell CH₃N=NOH ~1s cell to cell ArNHOH mins organ to organ

P450 Regulation

P450	Receptor	Constitutive	<u>Inducer</u>	<u>Organ</u>
1	AhR	steroids	PAH	liver, lung
2	CAR	androstane	PB	liver
		steroids		
3	PXR	pregnane	Dexamethasone	liver, intestine
		steroids	Rifampin –IL-6	
4	PPARα	fatty acids	fibrates	liver, kidney,
	Peroxisome-			heart
	Proliferator-			
	Activated			

2,3,7,8-Tetrachlorodibenzo-*p*-dioxin

Indolo(3,2-b)carbazole

3-Methylcholanthrene

Benzo[a]pyrene

Structures of aromatic hydrocarbon (AH) receptor ligands. Examples of toxic halogenated aromatic hydrocarbons (2,3,7,8-Tetrachlorodibenzo-p-dioxin). Carcinogenic nonhalogenated polycyclic aromatic hydrocarbons (3-Methylcholanthrene and Benzo[a]pyrene) and dietary constituents (Indolo(3,2-b) carbazole) are shown.

AHR = Aromatic Hydrocarbon Receptor

DME = Drug Metabolizing Enzyme

AHRE = AH-responsive-element

ARNT = AH-receptor-nuclear-translocator

Hsp90 = Heat shok protein 90

Nuclear receptor	Uptake transporter	CYPs	UGTs	Export transporter
AhR	n.d.	CYP1A1 CYP1A2	UGT1A1 UGT1A6 (rUGT1A7)	n.d.*
CAR	OATP2 (mOatp2)	CYP2B6 (rCYP2BI) (mCyp2b10)	UGT1A1 (rUGT2B1)	MRP2 (mMrp2)
PXR	OATP2 (mOatp2)	CYP3A4 (rCYP3A23) (mCyp3a11)	UGT1A1 (mUgt1a6) (mUgt1a9)	MRP2 MRP3

Inducible rodent enzymes are listed in parenthesis.

Selected human and rodent CYPs, UGTs and glucuronide transporters induced by the Ah receptor. CAR and PXR.

Image by MIT OpenCourseWare.

^{*}n.d., not detected.

Some Examples of Bioactivation of Drugs

Drug Metabolism Problem 2 Answers

20.201

S. R. Tannenbaum September 16, 2013

Tolbutamide

Testosterone

<u>Pioglitazone</u>

Pindolol

Reactive Intermediate

Bioactivation via Conjugative Enzymes

- GSH conjugate
- Acyl glucuronide
- Sulfation

GSH-Conjugate Mediated Toxicity

$$Br$$
 + GSH \longrightarrow Br SG \longrightarrow SG

Mutagenicity

Toxicity of Reversible GSH-Conjugates

A reactive molecule may initially be detoxified via conjugation with GSH, if the GSH conjugates are unstable they may revert back to the reactive moiety at a different site/organ

$$+\frac{GSH}{Liver}$$
SG - GSH Kidney

Benzyl isothiocyanate

Nephrotoxicity

$$R \stackrel{+ \text{ GSH}}{\longrightarrow} R \stackrel{O}{\longrightarrow} R \stackrel{- \text{ GSH}}{\longrightarrow} R \stackrel{- \text{ GSH}}{\longrightarrow} R \stackrel{O}{\longrightarrow} R \stackrel{O}{\longrightarrow}$$

Isocyanate

Acyl Glucuronide Migration

Bioactivation by Sulfation

Sulfate conjugates play an important role in the metabolic activation of *N*-hydroxylamines and *N*-hydroxylamides to reactive intermediates

Generic Method for Identifying Compounds that form Reactive Intermediates

Drug +
$$HO \stackrel{\bigcirc}{=} \overline{N}H_2 \stackrel{SH}{\to} O$$

Drug of interest is incubated with human liver microsomes in the presence of GSH

Detect with mass spectrometry (m/z 129)

$$\begin{array}{c|c} O & O & S \\ HO & N \\ H_2 \overline{N} & H & O \\ \end{array}$$

Reactive Metabolite (R)

A drug-glutathione cojugate will arise if drug is metabolized to a reactive intermediate

Quinous and Quinone Mathetes

Propanolol

Chlorzoxazone

Multiple pathways for biotransformation of drugs - the case of MPTP

Source: Stepan, Antonia F., Daniel P. Walker, et al. "Structural Alert / Reactive Metabolite Concept as Applied in Medicinal Chemistry to Mitigate the Risk of Idiosyncratic Drug Toxicity: A Perspective Based on the Critical Examination of Trends in the Top 200 Drugs Marketed in the United States." *Chemical Research in Toxicology* 24, no. 9 (2011): 1345-410.

Oxidative Stress and Antioxidation

20.201 November 12, 2008 Oxygen is a diradical ·0=0.

Conversion of O2 to H2O2 1e at a time

O2 => O2 => H2O2 => H2O

Sources of O.

Mitochondria - inefficiency in the election transport chain

Phagocytic cells - e.g. Macrophages

Ribse-5-P NADPH Oxidese
6-R-Gluc & HMP
NADP+ 20:

in phagosomes and cell membranes

: Cytochome P450 - uncoupling cycling in absence of substrate

Oxygen Radicals

$$Fe^{+2}$$
 + H_2O_2 + H^{\dagger} \longrightarrow Fe^{-} O_1 + H_2O_2 Fermyl

 Fe^{+3} O_1 O_2 O_3 O_4 O_4 O_5 O_4 O_5 O_5 O_4 O_5 O_5 O_6 O_6

Hor has the so short that it era difference only about a few Anstrone

Lipid Oxidation initiation: hu, Min - free redicite R. R. + ROO: ----Roo. +Roo. products: ROOH - RO. + HO. aldyles, Keteres, etc. react with proteins, muchaic acids CH3(CH)4CH=CH-CH2-CH=CH-CH), COOR

Nitric Oxide NO^{*}

- Ubiquitous radical produced by
 - ~ Neurons: neurotransmitter
 - ~ *Macrophages*: immune response
 - ~ Vascular endothelial cells: blood pressure control
- Generated by reaction of nitric oxide synthases (NOS) with L-arginine,
 NADPH and O₂. Reaction inhibited by N-methylarginine
- Physiological role of NO is balanced by toxic effects
 - ~ Reacts with O₂ to form N₂O₃: *nucleobase deamination* and *nitrosamine formation*
 - ~ Reacts with superoxide to form ONOO: nucleobase oxidation, protein oxidation and nitration

Infection, Injury, and Immunity

- Infection and injury, including toxicity cause an inflammatory response
- Inflammation involves the immune system
- The Immune system consists of both innate and adaptive responses
- Innate immunity involves cells that produce reactive chemicals and cytokines
- Adaptive immunity includes antibodies that are formed from neoantigens

Image by MIT OpenCourseWare.

Image by MIT OpenCourseWare.

Overview of liver zonal analysis

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Courtesy of Macmillan Publishers Limited. Used with permission.

Source: Surh, Young-Joon. "Cancer Chemoprevention with Dietary Phytochemicals." Nature Reviews Cancer 3, no. 10 (2003): 768-80.

Metabolic interaction between the phenolic antioxidants, butylated hydroxytoluene (BHT) and butylated hydroxya-nisole (BHA)

Note that activation of BHT to a toxic quinone methide can be catalyzed by cytochrome P450 or. In the presence of BHA, by prostaglandin H synthase.

Oxidation of phenylbutazone by prostaglandin H synthase (PHS) to a carbon-centered radical and peroxyl radical.

Note that the peroxyl radical can oxalic xenobiotics (X) in a peroxidative manner.

Transcriptional regulation mediated by the Antioxidant Response Element

Background

Rat GST-A2 and NAD(P)H:quinone oxidoreductase (NQO1) genes cloned and characterized.

Transcriptional regulation is mediated by two distinct enhancers:

- 1. The <u>xenobiotic response element</u> (XRE): confers inducibility to planar aromatic hydrocarbons mediated by Ah receptor.
- 2. The <u>antioxidant response element</u> (ARE): confers inducibility to prooxidants, electrophiles, phenolic antioxidants...

Glutathione Transferases

- Three Mammalian Glutathione Transferase Families:
 - Cytosolic
 - Mitochondrial
 - Microsomal
- Catalyze the conjugation of glutathione to non polar compounds containing an electrophilic carbon, nitrogen or sulphur atom.
- Cytosolic glutathione transferase are encoded by seven gene families:
 - In addition to their catalytic activity bind hydrophobic non-substrate ligands

Glutathione Transferases

- Some cytosolic glutathione transferases are elevated in livers of animals exposed to various xenobiotics
- Level of expression of glutathione transferases is critical in determining sensitivity of cells to a broad spectrum of toxic compounds
 - Carcinogens
 - cytotoxic chemotherapeutic drugs
- Human glutathione transferases M-1 and T-1 are deleted in 50% and 16% of population, respectively.
 - Increased susceptibility to bladder, colon, skin and possibly lung cancer

NAD(P)H – Quinone Oxidoreductase

- Cytosolic enzymes (NQO1 and NQO2) that catalyze two electron reduction and detoxication of highly reactive quinones.
- NAD(P)H quinone oxidoreductase maintains the endogenous lipid soluble anti oxidants, alpha tocopherol – hydroquinone and ubiquinol in their reduced and active forms.
- Enzymes are elevated in livers of animals exposed to various xenobiotics
- NQO1 knockouts have increased toxicity to benzene and benzo(a)pyrene induced skin carcinogenesis

MIT OpenCourseWare http://ocw.mit.edu

20.201 Mechanisms of Drug Actions Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.