20.181 Lecture 3

Contents

e 1 Phylogenetic trees
o 1.1 Overview of Approach
o 1.2 Possible trees
e 2 Trees in Python
o 2.1 Data Structure
o 2.2 Parsing Function

Phylogenetic trees
Input: (a multiple sequence alignment)

AATGC
TATGC
GGTGG
ACTCG

Lo

Output: tree, an abstract representation of the same data ((1,4),(2,3))
Overview of Approach

(in pseudocode)

for each possible tree:
calculate the score of (tree,data)
return tree with BEST score

Possible trees

o how many trees are there?
o how does the number of possible trees increase with the number of leaves...
linearly? ...exponentially?
= start with the simplest unrooted tree, it has three leaves
= how many ways are there to add another leaf? there are 3 ways- by
adding the new leaf attached to each of the 3 existing branches
(ignore the center leaf for now because we want to stick to binary
trees)
= now there are 5 places to add a leaf to a 4-leaf tree



= every time you put a new branch down, you gain 2 more places to
put a new branch: one from splitting an existing branch into two
parts, and one from the new branch itself
T _trees(n) = f_trees(n-1) * (2n-5)
o Tor n leaves, T_trees(n) = (2n-5)!! <- that double
factorial sign means to skip every other number
o f_trees(n=10)= 34*1076 f_trees(n=50) = 2.7*10"76
o Enumerating trees is not possible, so we are going to look only at a small
number of possible trees. We need a search strategy. And the optimal

search strategy will depend on the nature of the problem you're looking at.

o

What about rooted trees... well, we can just pick one of the leaves to serve as a root. So
the number of rooted trees with n leaves is just the number of unrooted trees with (n+1)
leaves, and f_rooted(n) = (2n-3)!!

Trees in Python

e For each node, we need to store:
1. names (and sequences?)
2. pointers to its left and right subtrees (its "children™)

Data Structure

« We're going to use a built-in dictionary as our data structure
o example tree = ((a,b),c)

treel = {"name":"a", "left":None, "right”:None} #for the
"subtree'" that consists of leaf a
tree2 = {"name":"internal”,"left":treel ...

« well, we could do that, referencing our dictionary defined above. OR we could
just avoid naming all the variables, and nest the definition of treel inside the
bigger tree (tree2 above)

tree2 =
{"name":"internal”, " left":{"name":"a","left":None, "right":N
one}, "right" :{"name":"b", "left" :None, "right" :None}}

both approaches are equivalent.

Parsing Function

« functions for dealing with this sort of data structure will be recursive

def leaves(tree):
it (tree["name”] = "internal”):
return [tree["name”]] # very important that this
returns a list



return leaves(tree["left"]) + leaves(tree["right"]) #
""+'" concatenates lists

def tree2string(tree): #a function to print out your tree
in newick format

print "(" + left + *," + right + )"

You'll be writing functions like these on the next homework. This code will
probably have to be modified slightly to work in the correct context. (Note: the
second function here is just an outline, filling in the details is homework problem
#2.)



	20.181/Lecture3
	Contents 
	Phylogenetic trees 
	Overview of Approach 
	Possible trees 

	Trees in Python 
	Data Structure 
	Parsing Function 



