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Outline 
 
1) Poisson analyses 
2) Power 
 
What is a Poisson process? 
 
Rare events 
Values are observational  (yes or no) 
Random distributed over time or place 
Observations do not affect the frequency of future observations (independent) 
Much of the variance is due to statistical variation, sampling variation 
 
Many natural processes can be fit to a Poisson distribution 
 
Consider this case: 
 
Incidence for leukemia in MA in 1996: 
680 cases distributed over 351 towns & cities 
 
Let us assume that  

1) the cases are independent and randomly distributed 
2) they are sufficiently infrequent as to not effect the total population ( >5 million) 

 
We can expect: 1) many towns & cities with no cases 

2) many towns & cities with number of cases near the mean- 
“the expected number” 

        # of cases: 680/351 ≈ 2.0 per town & city 
3)  few towns & cities with a number of cases that greatly exceed 
the mean. 
4) As the number of cases increases, the number of towns & 

        cities with that number will approach 0.0 
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Graphically- Poisson Distribution 
 
 
 
 
 
<Graph> 
 
 
 
 
 
 
If it were ideal: 
 
Properties- 1) the most probably number of events = 1st integer < µ, the distribution mean, 
  unless µ is an integer, 

in which case there are two equally probable maxima at 
  µ and µ - 1 
 
  2)  µ = σ2, the variance; therefore √µ = σ 
 
So, µ is the parameter that completely defines the Poisson distribution 
 
 
What questions can be addressed with Poisson stats? 
 
1) You are notified of a town in MA with 12 cases of leukemia. 
 
Is it significantly different than the mean for MA of 2? 
 
Is it unique, or could 12 be expected by chance? 
 
 
We calculate confidence intervals for µ, given an observed number of events = x, assuming a 
Poisson distribution: 
 
95%CI for µ about x = x + 1.92 ± 1.960 √x + 1.0 
 
 for x = 12, 95%CI = 6.8 to 21 
 
Therefore, we have greater than 95% confidence that the Poisson distribution to which 12 
events belongs is not equivalent to the Poisson distribution that has µ ≈ 2.0. 
 
If we conclude that 12 events is a part of a different Poisson distribution (i.e., it is not expected 
by chance), we will be wrong < 5% of the time. 
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If our chance of error, in thinking that 12 is not expected by chance as a part of the Poisson 
distribution with µ ≈ 2.0, is > 5% then 2 will reside in the 95% CI about 12. 
 
We can then say that our error for saying that “something is going on” in the town with 12 
leukemias is less than 5%.  
 
99%CI for µ about x = x + 3.32 ± 2.567 √x + 1.7 
 
 for x = 12, 99%CI = 5.79 to 24.9 
 
Based on the same reasoning as for the 95% CI, we have >99% confidence that 12 did not 
occur by chance when the observed population mean, µ (i.e., the most expected value of x), is 
approximately 2. 
 
 
Poisson Probability Mass Function 
 
Given a known Poisson distribution, we can estimate the probability of an event 
occurring… 
 
Pr {Xobs = x} = (e-µ) µx x = 0, 1, 2,… 
                              x! 
 
Where Xobs = number observed 
 x = a given number possible 
 µ = mean number of events expected  <estimated from sample data> 
 
 
What is the probability of observing 12 cases of leukemia when a mean of ca. 2 is 
expected 
 
Pr {Xobs = 12} = (e-2) 212  
          12! 
 
 
  1/106 ⇒ unlikely, but not impossible  ⇒ p = 0.000001 
 
Given a Poisson mean of 2 cases per town, there is a one in a million chance that you will 
observe a town with 12 cases by chance. 
 
Or… 
 
There is a 1 in a million chance of being wrong if you conclude that 12 did not occur by 
chance, that something is going on in the town. 
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How Poisson are the data? 
 
Two tests: 
 
A quick and crude test: 
 

Does xbar = σ2?      Remember:  for Poisson distribution, µ = σ2 
 
However not very specific test! 
 
 
Better:  Plot from the data:  xi versus ln(observed frequency of xi) + ln(xi!) 
 
 xi = each observed number of events in the distribution 
 
 
 
 
 
<graph> 
 
 
 
 
If the plot is a line with positive slope as xi increases, then the data are ideally Poisson 
distributed. 
 
 
Consider another scenario: 
 
Consider prostate cancer in MA:  1996 incidence = 7900 
 
 Avg. per city & town = 7900/351 = 23 
 
Consider a town with 50 cases. 
 
How likely is it that a town has 50 cases by chance? 
 
How would you approach this problem? 
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Distributions Interrogation 
 
Always try to interrogate the distribution of data 
Why? 
 
1) To estimate the form of the sample population's distribution 
2) To look for informative features such as multiple populations, skew 
3) To determine which are the most sensitive statistical methods to apply for analyses 
4) To look for reasons other than chance for observations 
 
 
Confidence Level 

 
Why the 95% confidence level? p ≤  0.05 
 
Meaning: ≤  a 5% chance that an observed numerical difference is occurring 
by chance, when in fact two compared populations are the same. 
 
Foolish convention? 
 
Why not a convention…at say the 99.99% level?  p ≤ 0.0001 
 
 As we shall see, this standard would require: 
 
1) A study of larger sample size 
2) More work to do the study 
3) More expense 
4) And…it might not be necessary at all in the end 
 
Related to Statistical Error Ideas 
 
Type 1 Error-  Confidence requirement set too low 
   p is too large (e.g., p < 0.2 or p > 0.05) 
 
High False Positive Rate-  You think that an observed numerical difference is not 
occurring by chance, but it in fact is. 
"Low specificity " 
 
This is a common problem with the convention of setting p ≤  0.05, and accepting a 
5% error rate for concluding that populations are different in some parameter. 
 

When is this not acceptable?  Depends on the consequences of the decision that 
follows.  When consequence of the error of thinking there is a difference when 
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there is not, are dire for quality of life, health, or life, this type of statistical error 
is not acceptable. 

  
 
 

E.g. Everyday you test your drinking water to determine whether its level for a  
toxin is less than the lethal dose. I.e., there is a difference between your water's 
level and the lethal dose 

  
Would you accept a test with  p = 0.05? 

 
Remember, based on this, you will be accepting a 5% error rate. 
 
1 in 20 times this type 1 error will result in your death.  5% of the time when you 

conclude that the observed difference does not occur by chance, it will have occurred 
by chance. 

 
Which means that 5% of the time the water's level and the lethal dose will appear 

different by chance, when they are in fact equivalent.  And that will give you a lethal 
dose. 

 
Type 2 Error-  Confidence requirement set too high 

   p too low (e.g.,  p << 0.05, p = 0.00001) 
 

High False Negative rate You conclude that an observed difference is due to 
Low sensitivity   chance and error, when it is not 

I.e. you think there is no difference when there 
really IS. 

 
 When is this acceptable?  When the potential loss of quality of life, health, life is  
 considered minimal compared to the wasted costs of an unnecessary response. 
 
 So, you don’t want to do anything. 
 
 However, realize that there are more human costs than just change in health! 
 Quality of life measures are much harder to evaluate!  Even if the garbage dump 
 or chemical exhausts are not making you physically sick you still would have a 
 higher quality of life if it were removed. 
 
 
Power to test 
 
Suppose you perform a study of exposed versus non-exposed and do not detect an effect 
or difference at the p = 0.01 level (99% confidence) when there really is one. 
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I.e., You conclude with a low degree of uncertainty that there is not a difference, when 
there really is one.  (Type II error; e.g., Fisher’s error about cigarette smoke and lung 
cancer) 
 
Then, the Power of your test is too low. 
Power = the sensitivity of your study design to detect differences that do not occur solely 
by chance and error 
 
What could you do to increase your power to detect? 
 

1) You are stuck with the small effect, but consider: Could give a higher dose? I.e., 
look for an example where exposure was greater. 

 
2) Reduce Variance: You might improve your precision, but often hard to do 

because you my be stuck with your test 
 

3) You might increase your sample size. 
 

By how much?  ⇒ Power to test analyses 
 
(There are some limits here: a)costs; and b) statistical limits on the amount of 
improvement) 
 

4) Lower your confidence <increase p towards 0.05> 
ARE you allowed to do this? 
 

 
Note that this is a new statistical realm 
 
We now assume that there is a difference.  One sample set may show the difference, 
whereas another may not by chance, even though the samples are drawn from the same 
populations. 
 
How we now consider again the two types of statistical errors: 
 
β = Type II error: At a given level of significance accepting that there is no 

difference (i.e., accepting “the null hypothesis”) when there is.  
That is concluding that observed numerical difference occur by 
chance and error, when in fact they occur because of other factors. 

Vs 
 
α – Type I error: At a given level of significance concluding that there is a  

difference (i.e. rejecting the null hypothesis), when the observed 
numerical difference is in fact due to chance and error. 
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α = p  (When p =  0.05,  5% of the time we will conclude there is a difference, when 
there really isn't.) 
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The Key Question: 
 
How often will a test give a t-statistic that causes us to conclude that there is a difference, 
when there is one <i.e., reject the null hypothesis when it is false> 
 
What is the sensitivity of our test? 
 
Power = 1 – β = fraction of the time that a test will detect a difference when there 

is one 
 
β = Risk of missing a real effect 
 
Therefore, when our type II error is small, β approaches 0, and Power approaches 100% 
ability to detect differences. 
 
Factors that affect Power 
 
1)  size of x bar1 – x bar2 
2)  n, sample size 
3)  t level 
 
t for x bar1 – x bar2      
 
       estimates      
        
t’ for µ1 - µ2 = δ      
 
 t' = δ/σ √n/2 
 
 power ∝ δ/σ, non-centrality parameter = φ, phi 
 
As stated earlier: 
 
As δ increases, power increases 
As σ decreases, power increases 
As n increases, power increases 
 
 
 
Given a level of significance, δ, and σ (and therefore φ), there are several methods for 
arriving at power to detect: 
 
1) Software packages 
2) Mathematical estimation (Schork and Remington) 
3) Graphically 
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Logistics of the graphical method 
 

1) Have an expected difference based on:  x bar1 – x bar2 
which is an estimate of µ1 - µ2 
 
2) Have s1 + s2 
calculate pool population variance s2 
 
s2 = 0.5 (s2

1 + s2
2) 

s2 is and estimate of σ2 

Therefore,  √s2 ⇒  σ;  ⇒  φ = δ/σ 
 
3) Find power table or graph for t-test of given α (p) 
 

E.g. 6-9, α = 0.05 
Given value of φ, you can then determine n, sample size, needed for a given level 
of power. 
 
E.g. @ φ = 1, n = 20 gives power to detect of 90% 
⇒ B <type II error> = 10% 
10% of the time true differences will be attributed to chance. 

 
 
The Bonferroni Inequality 
 
Judging “statistical success” 
 
Let’s say that you performed 3 tests for three replicates of the same comparison.  In each 
case t indicated 95% confidence that you had not detected a difference by chance.  What 
is the probability, αT, that in at least one case the observed difference does in fact occur 
by chance? 
  0.05 + 0.05 + 0.05 = 0.15, 15% 
 
Mathematically, where K= 3, number of tests 

α = type I error, error of concluding a difference when due to 
chance 

 
αT = Kα 
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In general, we want to set αT < Kα     "Bonferroni Inequality" 
So for multiple tests, we set 
α ≤ αT 
        K 
 
E.g., If we desired that our probability of detecting one difference by chance in 4 trials to 
be ≤5% (i.e., αT), then we must require for each trial p = α= 0.05 = 0.0125 or less. 
               4 
 
In particular, the Bonferroni Inequality should be considered when an effect is 
observed in only one of several trials.  As the number of negative trials increases, the 
significance of an observed effect must be qualified by the Bonferroni Inequality.  
Given many opportunities to observe an effect at a low level of confidence…you are 
MORE likely to have observed it by chance.  Take this into consideration when 
evaluating meta-analyses in which there are many trials reviewed, but only a few 
are "positive" at a low level of confidence. 
 
In a similar fashion, when all three trials show a difference at the 5% level we can say 
that in our example the probability that all three observed differences occurred by  
chance = (0.05)3 = 1.25 x 10-4 = (α)K 
 
 
Final Words on Statistical Analyses 
 

1) When the hypothesis of a chemical → ∆ health is supported, the p-value should 
match the envisioned consequences of the conclusion: 

 
Radon gas in basements ⇒ lung cancer? 
 
p = 0.05 ⇒ Type I errors: conclude radon gas causes lung cancer, when it 
doesn't 

  Lots of unnecessary expense to ventilate basements? 
 
p = 0.0001 ⇒ Type II errors: conclude radon doesn't case lung cancer, 
when it does 
Lots of avoidable lung cancers? 
 
Public Health Policy & Government Regulations must balance cost to society 
versus health of individuals...who make up society…segmentally. 
Evaluations based on ATTRIBUTABLE RISK for radon. 
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2) When the hypothesis of a health effect is not supported, it does not mean that the 
hypothesis is wrong.  Just that it can’t be supported on statistical grounds.   

 
"Probably due to chance" ≠ "due to chance." 

 
In this case evaluation of biological mechanism information can be crucial- why? 
 
A poor test can lead to p > 0.05 
A small sample size 
 
∴Statistical Analysis must be tempered by scientific reasoning to decide what to 
do next: 

Statistics:  Quantitative method 
is a tool of science, not the 
science! 

a) discontinue study 
b) Intensify efforts 

 
 
 
 
Statistical Analyses are the beginning of scientific investigations of potential chemical 
exposure/health effect relationships.  They are not the final word.  EHS address the 
following difficult issues: 

1) Something may be going on. 
2) Probably nothing is going on. 
3) Main concern- Yes, something is going on and it’s terrible and 

it’s preventable! 
 
Toxicology & Biology allow us to evaluate the plausibility of an agent → ∆health once it 
is detected by statistical methods.  Toxicology & Biology can sometimes lead to 
continued analyses when the stats suggest nothing is going on. 
 
 
Final Thoughts 
 

1) Stats are not the final word.  They allow us to quantify uncertainty.  They do not 
allow us to establish facts. 

 
2) Small effects could be biologically important although not statistically significant.  

Observed effects must also be integrated with independent experiments. 
 

3) Large effects could be erroneous.  Don’t forget that p(α) means that there is a 
finite possibility that the difference does occur by chance. 

 
4) Set p at a meaningful value in your work.  If p is too low, it may prohibit a study 

(e.g. too expensive to achieve n needed).  If p is too high, it may lead to errors that 
are also costly in the long run. 
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