

façade renovation/ transformation: building 26

Ruchi Jain Gordana Jakimovska Ed Rice

2 Approaches:

Selective:

Substitution of elements, glass panels, spandrel panels etc.

Transformative:

2nd layer on façade, for fixed shades, more clear glass area.

- 1) What is the effect of changing window size and location, or glass type?
- 2) Is there a conflict between daylighting and glare protection in the current scheme?
- 3) Are there any materials which may help protect from direct sun and daylight simultaneously?
- 4) How would a multi-leaf façade change the feel of the interior space?
- 5) Would it help or hurt daylighting overall?

Daylight Analysis Daylight Factor Value Range: 0.2 - 8.0 % (c) ECOTECT v6

ECOTECT MODEL

% 8.00+ 7.22 6.44

5.66 4.88

4.10 3.32

0.98 0.20

Spandrel or translucent glass in the upper panel

Solex or clear glass in the middle panels

Spandrel in the lower panel

Definition of existing Solex glass in radiance:


```
FileName= SOLEX 8.PPG
# Product Name= Solex®
# NFRC ID= 5021
# Manufacturer Name= PPG Industries
# Glazing Type= Monolithic
# Coated Side= Neither
# Transmittance= 0.718
# Front Reflectance= 0.072
# Back Reflectance= 0.073
# Thickness(mm)= 0.000
# Appearance= Light Green
             SOLEX_8_glass
void glass
0
0
3
   0.656
           0.835
                  0.756
void BRTDfunc SOLEX_8_front
10
          0.076
   0.063
                  0.073
   0.602
          0.766
                  0.693
   000
900000000
void BRTDfunc SOLEX_8_back
10
   0.064
          0.076
                  0.074
   0.602
          0.766
                  0.693
   000
900000000
```

Direct Light

Solex glass in the middle panels with spandrel in the upper panel

Clear glass in the middle panels with spandrel in the upper panel

Translucent glass in the upper panel with clear glass in the middle panels

Diffuse Light

Solex glass in the middle panels with spandrel in the upper panel

Clear glass in the middle panels with spandrel in the upper panel

Translucent glass in the upper panel with clear glass in the middle panels

LEED

Daylight Analysis DA- Solex \table Fange: 0.0 - 80.0 % (e) ECOTECT v6

Dynamic Simulation w/ Daysim

DA:

Existing Solex Glass

DF:

Existing Solex Glass

100.0+ 91.0 82.0 73.0 64.0 54.9 45.9 38.9 27.9 18.9 9.9 a a 25.0+ 22.5 20.0 17.5 15.0 12.5 10.0 7.5 5.0

2.5

0.0

**

3/9/98

Phillip Greenup, Arup

```
void prism2 26 LCP
11 f1 dx1 dy1 dz1 f2 dx2 dy2 dz2 lcp0.cal -rz 90
      0.5 1.5
      Phillip Greenup
                                                 3/9/98
{ Fresnel calculations of transmission and reflection }
cos i=abs(Rdot):
cos t = sqrt(A2*A2-1+cos i*cos i);
rte=(cos i-cos t)/(cos i+cos t);
rtm=(A2*A2*cos i-cos t)/(A2*A2*cos i+cos t);
R=(rte*rte+rtm*rtm)/2;
T=1-R;
{ Fractions deflected and undeflected }
tan rp=abs(Dz)/(sqrt(A2*A2-1+Dx*Dx));
m=floor(tan rp/A1);
fd0=(tan rp/A1)*(-1)^m+2*floor((m+1)/2)*(-1)^(m+1);
fu0=1-fd0:
fd=fd0*T*T:
fu=fu0*T*T;
{ Selection of two strongest components }
N1=if(fu-fd,if(fu-R,1,3),if(fd-R,2,3));
N2=if(fu-fd,if(fu-R,if(fd-R,2,3),1),if(fd-R,if(fu-R,1,3),2));
f1=select(N1,fu,fd,R);
dx1=select(N1,Dx,Dx,-Dx);
dy1=Dy;
dz1=select(N1,Dz,-Dz,Dz);
f2=select(N2,fu,fd,R);
dx2=select(N2,Dx,Dx,-Dx);
dy2=Dy;
dz2=select(N2,Dz,-Dz,Dz);
```


South Exposure-

West Exposure-

LEED

Daylight Analysis DA- Solex \table Fange: 0.0 - 80.0 % (e) ECOTECT v6

Dynamic Simulation w/ Daysim

DA:

Existing Solex Glass

DF:

Existing Solex Glass

100.0+ 91.0 82.0 73.0 64.0 54.9 45.9 38.9 27.9 18.9 9.9 a a 25.0+ 22.5 20.0 17.5 15.0 12.5 10.0 7.5 5.0

2.5

0.0

**

January- West

March- East

March- West

May- East

March- West

August- East

October- West

March- East

March- West

May- East

March- West

January- Single Facade- West

March- Single- East

May-Single- East

July- Single- West

January- East

March- East

March- West

March- West

July- West

October- West

January- South

January- West

July- South- Mirror Blinds

July- South- Glass Blings

January- Single Facade- West

March- Single- East

