4.440 / 4.462 Basic Structural Design Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

EQUATIONS FOR STRUCTURAL DESIGN

Axial stress: $\sigma = P/A$

Bending stress due to an applied moment, M: $\sigma = My/I$ where y is the distance from the neutral axis of the beam

Critical buckling load for a column in axial compression: $P_{cr} = \pi^2 EI/(kL)^2$

Moment of Inertia (I):

$$I_{xx} = I_{yy} = \pi d^4/64$$

 $x \longrightarrow y \\ x \longrightarrow x \qquad h$

$$I_{xx} = bh^3/12$$
 $I_{yy} = hb^3/12$

• Modulus of Elasticity (E): Approximate values for six common structural materials:

 $E_{\text{steel}} = 29,000 \text{ ksi}$ $E_{\text{concrete}} = 3,000 \text{ ksi}$ $E_{glass} = 10,000 \text{ ksi}$

 $E_{aluminum} = 10,000 \text{ ksi}$

 $E_{timber} = 1,600 \text{ ksi}$ $E_{brick} = 3,000 \text{ ksi}$

• Effective Length of the column (k):

Figure by MIT OpenCourseWare.

Effective Length Factors k for centrally loaded columns with various idealized end conditions. (*)

^(*) Taken from: Basic Steel Design with LRFD, T.V. Galambos, F.J. Lin and B.G. Johnston, Prentice Hall, Upper Saddle River, New Jersey, 1996, pp. 88-89.