
WHEN IS REASONING VISUAL? 

GEORGE STINY 
MIT 

Abstract. How to stop counting and start seeing. 

My line of thought 

I’d like to take a stab at the following question from the point of view 
of someone who thinks about design. I’m mostly interested in how I can come 
up with something new when I calculate with shapes. How creative can I 
possibly be if I use rules? Am I any more creative if I don’t? I won’t say 
anything else about this, but keep it in mind. My question right now has to do 
with seeing: 

(1) When is reasoning visual? 

That I come from MIT where the motto is ‘Minds and Hands’ — I’m 
told this means theory and practice — may put me at something of a 
disadvantage when it comes to original thinking about minds and eyes. Anyone 
who has seen MIT knows instantly that no one there pays much attention to 
how things look, even with a distinguished architectural tradition including 
Aalto and today Siza, Maki, Gehry, and Correa. MIT is not a visual place. I’m 
going to try and see anyway. 

I’m not daring enough to attack question (1) directly. My first thought 
was to tackle two additional questions and to take a route through their answers 
that appeared to me more clearly marked: 

(2) When is calculating visual? 
(3) Does reasoning include calculating? 

If the answer to question (3) is a solid yes and I can answer question (2), then 
I can use visual calculating as a working model to understand visual reasoning. 
This is reasoning by inference — from the properties of a part to the properties 
of the whole. And this is how everything is related 
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if it all fits together the way it’s supposed to. But the longer I looked at my 
neat little diagram — is this visual reasoning? — the more I thought about 
which way the inclusions should go. Maybe the relationships are really like 
this 
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so that reasoning and calculating are merely special cases of visual reasoning 
and visual calculating. In fact, I’m sure each of my diagrams is correct in its 
own way, and have already established the underlying equivalencies for 
calculating by counting and alternatively by seeing. (Counting is the standard 
model. I’ll return to the idea that calculating is normative later on.) Some of 
you may be familiar with the details. They involve the algebras of shapes U

i j 
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and whether basic elements in shapes are points with dimension i = 0, or lines, 
planes, or solids with dimension i > 0. And then there are a number of 
technical devices including, for example, analytic descriptions of basic 
elements and their boundaries, canonical representations of shapes using 
maximal elements, and reduction rules to compare shapes and combine them. 
But right now, I’d like to take a more leisurely, conversational approach. There’s 
no reason to insist on rigor in Bellagio on Lake Como in the summer. 
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First I show that calculating is part of reasoning, and then by analogy 
— how many kinds of reasoning are there anyway? — conclude that visual 
calculating is part of visual reasoning. And I go on to present some of the 
evidence I’ve found for visual calculating. My plan is the same. What I glean 
from visual calculating will tell me what I need to know about visual 
reasoning. This is a discursive process that runs by logic or desultory 
rambling. I’m not too fond of logic and avoid it if I can. So I’m apt to ramble 
aimlessly. Roaming around to see what’s what is a more effective way 
(procedure) to get new and useful results. But the ambiguity of this process — 
sometimes logic and sometimes not — isn’t wasted. It shows better than 
anything I can say why visual calculating and so reasoning are important. 
They’re the only way I know to deal with ambiguity and novelty, and not give 
up on calculating as a creative part of thought. This is the key if calculating is 
to model visual reasoning. 

Some of you may have already decided that my line of thought is only 
engineering. It may be practical to use models and the like, but it’s unlikely to 
lead to fresh insights of the kind you have come to hear. I won’t argue that I’m 
not doing engineering. I’m more confident about calculating than I ever will 
be about reasoning. I can point to examples of calculating — including one or 
two of my own invention — but I’m never sure about reasoning. My own 
reasoning when it goes beyond calculating is as suspect as any. If I think I’ve 
got a really good argument, someone soon comes along and pokes holes in it. 
And it’s the same if I try to follow the reasoning of others. I go from thinking 
I’m thinking to thinking I’m not. This is the sort of abstruse game philosophers 
like to play. It’s hard, and it goes on and on forever. I’m no philosopher. I’m 
a lot happier with the more accessible pleasures of engineering. I like to 
calculate and to get sensible results. 

But what about fresh insights? Everybody is always on the lookout 
for something new. Is there any reason to buy into my three questions if it’s 
not going to go anywhere new and different? I’m always surprised at how 
much more there is to calculating than I expect at the beginning. What surprises 
me the most is that the best surprises don’t come from clever ways of counting 
or complicated coding tricks that take real brain power — from what’s valued 
and encouraged in calculating — but straight from seeing. Let’s see just how 
visual calculating works. I can’t be sure before I show you, but I’m almost 
positive that you’re going to be surprised at how much there is to visual 
reasoning if it’s like visual calculating. 
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Does reasoning include calculating? 

I want to show that reasoning includes calculating. Most of the people 
I’ve asked agree that it does, but only as a narrow kind of process among many 
other kinds of greater scope that contribute more to thinking. Even so, I need 
to show this to go on: I need an account of reasoning that’s like calculating, so 
that I can explain visual reasoning in terms of visual calculating. I won’t 
develop an account of my own from scratch. Others have done this — Thomas 
Hobbes was apparently the first one — in a variety of different ways from 
which I can select. This may take some reasoning — at least a little judgment 
if not actual calculating — but the stakes aren’t high. There’s enough agreement 
to decide on aesthetic grounds alone. There’s no reason for careful analysis 
and rigorous argument. This is the kind of everyday choice that’s easy to 
make, but that’s hard to justify beyond its results. This is the kind of choice I 
like. 

The American pragmatist William James gives an account of reasoning 
in The Principles of Psychology that lets me start. For James, reasoning is a 
compound process with interlocking parts. He divides the ‘art of the reasoner’ 
into moieties: 

First, sagacity, or the ability to discover what part, M, lies 
embedded in the whole S which is before him; 

Second, learning, or the ability to recall promptly M’s 
consequences, concomitants, or implications. 

This is exactly what happens when rules are used to calculate. There’s 
the part M to be embedded in the whole S and the consequences, etc. — call 
them P — of finding M in S. The rule M → P applies to S to produce something 
new. Of course, this is only a gloss. It leaves out most of the important details. 
I have to say a lot more about how the rule works when it’s used. The real 
trick is to find a suitable embedding relation, and to show how M can be 
embedded in S, and how together with P, this changes S. 

James takes the syllogism as his example — this only confirms the 
link to calculating — with almost no attention to the underlying details that 
make rules work. But he has something else far more interesting and weighty 
in mind. He wants to plumb creative thinking and describe the source of 
originality. In fact, James’s overarching definition of reasoning is the ability 
to deal with novelty. Isn’t this why reasoning — especially the visual kind — 
makes a difference? 
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If we glance at the ordinary syllogism — 
M is P; 
S is M; 

∴ S is P 
— we see that the second or minor premise, the ‘subsumption’ as it 
is sometimes called, is the one requiring the sagacity; the first or 
major the one requiring the fertility, or fulness of learning. Usually, 
the learning is more apt to be ready than the sagacity, the ability to 
seize fresh aspects in concrete things being rarer than the ability to 
learn old rules; so that, in most actual cases of reasoning, the minor 
premise, or the way of conceiving the subject, is the one that makes 
the novel step in thought. This is, to be sure, not always the case; for 
the fact that M carries P with it may also be unfamiliar and now 
formulated for the first time. 

I think James is right about ‘the novel step in thought’. Embedding — 
‘the ability to seize fresh aspects in concrete things’ — is the key. And I’ll 
give a more faceted account of the embedding relation as I go on. Of course, 
reasoning that works isn’t always surprising, but it may be if it doesn’t. Let’s 
look at an example of this that shows a few details of embedding, and how 
rules make use of them. My example deals with line drawings (shapes), but 
this doesn’t mean it’s visual. Whether or not seeing relies on reasoning, 
calculating needn’t involve seeing. In fact, my example shows how calculating 
and seeing may disagree. There’s got to be a way to reconcile them if I’m 
going to show how visual calculating and hence reasoning are possible. Again, 
embedding is the key. 

A first look at calculating 

T. G. Evans — an aboriginal computer scientist — uses the rules of a 
‘grammar’ to define shapes in terms of their ‘lowest level constituents’ — or 
alternatively atoms, components, primitives, units, and the like. This illustrates 
some notions that have been used widely in computer applications for a long 
time. But in fact, these ideas are as fresh today as they ever were. (Rules like 
this were applied early on in ‘picture languages’ to combine picture atoms and 
fragments, and later in Christopher Alexander’s much better known but formally 
derivative ‘pattern language’. My own set grammars are also comparable, 
even if more ambitious: they’re the same as Turing machines.) 

Evans’s grammar contains rules like this one 
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Three lines → Triangle 

that defines triangles in the ordinary way as polygons with three sides. In 
order to show how the rule works, I first have to give the embedding relation, 
and then tell what options there are to satisfy it. For Evans, embedding is 
identity among constituents. (This is what happens when i is zero in the algebras 
U

i j
.) The rule applies to a shape if all of it’s constituents — or more generally 

for any rule in a recursive scheme, the constituents the rule implies — are also 
in the shape. The constituents in the rule may be transformed as an arrangement 
— moved around freely, reflected, or scaled — to obtain a correspondence 
with constituents in the shape. 

Evans uses this shape 

as an example. The shape has a finite set of constituents. It’s 24 line segments 
that are each defined by its endpoints: first there are the four sides of the large 
square and their halves 

then the two diagonals of the square and their halves 

and finally the horizontal and the vertical and their halves 

And Evans’s rule — the one I showed above — applies without a hitch to pick 
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out the 16 triangular parts of the shape: eight small triangles, four medium 
ones, and four large ones 

This is really pretty neat. In fact, it’s very clever coding. If there were only 
eight long lines in the shape, then there would just be large triangles and no 
small or medium ones. And if lines were only halves, then there would be 
three distinct kinds of triangles 

not all with three sides, that I would have to define in separate rules. This isn’t 
what I know about triangles or what I actually see. But Evans’s grammar gets 
around all of this artfully. The grammar is seeing what I do, when a solitary 
rule of no great complexity — merely three lines — is used to calculate. What 
else do rules and constituents imply? How far can I go with this? 

I can give rules for squares and rectangles — four lines apiece — bow 
ties of distinct shapes — again four lines apiece — and visually homonymous 
stars — one type defined by four lines and the other type by eight halves 

������� �������� 

And my rules find all of these figures wherever they are in the shape: there are 
five squares, four rectangles, six bow ties, and a star of each type. This is 
great. But already, there are signs of trouble. I can’t tell the stars apart just by 
looking at them, even if I can by the rule I apply. Calculating and seeing are 
beginning to look different. 

Now suppose I go on to define an additional rule 

Line → 
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that erases lines — the lowest level constituents — in Evans’s shape. What do 
I get if I apply my new rule to erase the lines in all small triangles, or medium 
or large ones? Whatever happens, I don’t expect to see the lines I’ve removed 
in my result. If I do the erasing by hand to remove the lines I see in small 
triangles, the shape disappears. And for medium or large triangles — erasing 
what I see by hand — I get a Greek cross that looks like this 

But in all three cases when I calculate with the rule, my results look like this 

Seeing is believing. Some parts are hard to delete when I use my eyes, even 
after I’ve applied the rule. The shape is visually intact whichever lines I erase. 
You can check me if you like. I haven’t made any careless mistakes, yet I 
don’t get what I expect. I must be seeing things. Actually, I am. The lines I’ve 
erased with the rule aren’t there. No two of the resulting shapes are the same 
— they’re numerically distinct with eight, 16, and 18 constituents apiece — 
and they’re all different than the shape I started with. But how can I tell which 
shape is which if I merely look? How can anyone, without consulting someone 
else? God might know, but I’m left with experts and quacks. Who do I ask to 
tell them apart? I’m lucky I don’t have to trust my eyes. There’s a better way. 
I can calculate to find out. I can keep track of where I’ve used the rule to 
distinguish what I can’t see. This may not be the kind of novelty James has in 
mind. 

Seeing is confused in other ways as well, when it comes to calculating 
in Evans’s grammar. Many parts that are easy for me to see — there are no 
tricks, you can see the same parts yourselves — are impossible for rules to 
find. Take the triaxial motif 
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with equilateral arms. I can define the Y — there are also other letters from A 
to Z — in the rule 

Three lines → Y 

The Y appears indefinitely many times 

����� ����� ����� 
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yet the rule — or any other rule — can’t find it, not even once. All of my 
results are correct. This is calculating, but it isn’t seeing. What’s gone wrong? 
All of a sudden, Evans’s grammar is blind. Is there always something that’s 
going to be missed when I calculate? It’s not because I can’t define precisely 
what I want to find. I can do that for any shape I like. But surely, there’s got 
to be some way to see Y.  Maybe it should be defined in the rule 

Three lines → WHY? 

This takes me to real homonyms. What I thought at first was seeing isn’t 
seeing at all. It’s hearing. Sensible experience is much the same from one 
modality to the next. It’s ambiguous. Parts are forever fusing and dividing. Is 
this going too far? I don’t know. I don’t think James would think so. It’s more 
than likely that he would welcome the novelty. One of his students gave us the 
notorious line ‘A rose is . . . a rose’. Why can’t I see Y when I calculate? 

Let’s see how the shape 

is put together, and what this implies about what I can see. The 24 constituents 
(line segments) in the shape include eight long lines 
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and their 16 halves 

Each long line contains two halves, and each half is contained in a long line. 
This gives me the 16 triangles I want. But if I erase a long line, there are two 
halves that visually compensate for the loss. And if I erase any half, there’s a 
long line that fills in. The shape is going to look exactly the same, even as its 
constituents change. Calculating multiplies distinctions I simply can’t see. 

(A productive way to explore the depths of Evans’s shape is to count 
the different kinds of triangles it contains. Small triangles always have three 
lines, medium ones have three to five lines, and large ones have three to nine 
lines. Lines are taken from these schemes 

There are five distinct configurations for each grouping of three collinear lines 

So there are five versions of each medium triangle, and 125 of each large one. 
The census is given in Table 1. More is happening in Evans’s shape than I can 
possibly see. What use are my eyes when nearly everything is hidden? I’ve 
no doubt that Evans’s shape contains 16 triangles with three lines apiece. Seeing 
is believing. But it’s only a half — actually 3% — truth.) 
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___________________________________________________________________ 

Table 1 

Census of Triangles in Evans’s Shape 

Number of Lines 3 4 5 6 7 8 9 3-9 
Number of Triangles 16 48 124 180 120 36 4 528 

___________________________________________________________________ 

Of course when I erase a long line, I can also remove it’s halves at the 
same time. This takes another rule 

Three collinear lines → 

but gives some interesting results. I get a Greek cross (two lines) and another 
one (four halves) — at least this looks right — erasing the sides of large triangles 

a star (four lines) and a Greek cross (four halves) — or maybe the star is a pair 
of crosses (two lines apiece), but that’s OK — for the sides of medium triangles 

and this — it’s eight lines — for the sides of small triangles 

This is a marked improvement, and it suggests more. If I add the conjugate 
rule for halves 

Two collinear lines → 
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so that the long line that contains a half is erased at the same time the half is, 
then I get the visual results I’m looking for. I started with a single rule to erase 
a line, and now have three rules that have to be applied judiciously. But so 
what? The grammar is fixed, even if the new rules are ad hoc. 

(This reminds me of the old joke about an MIT engineer. In fact, 
Evans hails from MIT, too. Anyway, the engineer is going to be guillotined. 
The blade falls fast and stops scarcely short of his neck. He looks up and 
points — ‘I can fix that!’ And so he does to show he’s sharp and to collect his 
reward. Poor sap: nobody told him that hard problems — the only kind worth 
thinking about at MIT — don’t necessarily have useful answers. No matter 
what kind of research you do, it’s got to be very complicated. This shouts, 
‘Hey! — I’m from MIT.’  Good ideas aren’t meant to be interesting or fun. 
They have to be hard to show your worth. The more I think about visual 
calculating and how to do it, the more I’m sure that it’s the uncomplicated, the 
vague, and the ambiguous that matter the most in both research and education. 
It’s much better to be flexible than tough. Shapes are full of miscellaneous 
possibilities. You never know what else there is to see.) 

But what about the Y? Why can’t the rule 

Three lines → Y 

find it when I can see it almost everywhere I look? While there may be too 
many constituents to erase the lines in triangles, there aren’t enough constituents 
to find even a single Y.  One or two segments can be found in a number of 
places 

but never three segments at once. New constituents can always be added to 
complete Y’s 
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(What do additional constituents do when I try to erase the lines in triangles? 
How do they change the census of triangles in Table 1?) Yet no matter what I 
do, there are never going to be enough constituents to find all of the Y’s there 
are to see. I can’t specify (anticipate) everything I might see before I’ve had a 
chance to look. What about other letters from A to Z? What about big K’s and 
little k’s? What about stars and crosses 

����� ����� 

����� 

����� 

����� ����� 

Evans’s constituents miss most of them. My analysis has got to stop sometime, 
and when it does, calculating goes blind. Analysis may be an essential part of 
reasoning — maybe it’s a prerequisite — but it seems only to get in the way of 
seeing. 

Neither the surplus of lines nor the lack of Y’s — and other parts — 
seems right. What I see and what Evans implies I should when I calculate are 
just not the same. Must calculating and visual experience be related so 
haphazardly? There’s a huge gap to bridge between minds and eyes if I’m 
ever going to get anywhere with visual calculating. Visual reasoning is long 
out of sight. But hold on. Is the gap real, or an example of not thinking that 
can be addressed without appealing endlessly to ad hoc devices? 

The problem with Evans’s grammar is completely artificial — if you’re 
still with me, you’ve probably decided all calculating is — and it needn’t 
really occur. Evans uses a zero dimensional embedding relation that’s meant 
for points to calculate with shapes made up of one dimensional line segments. 
(This amounts to confusing the algebras U

i j
 for i = 0 and i = 1.) This appears 

trivial enough, but the disparity has two bewildering consequences. 

First, the shape 

13




G. STINY


has no obvious constituents to serve as points. It’s easy to see that lines come 
undivided. How can I cut these two 

in a meaningful way without knowing beforehand what rules there are and 
how I’m going to use them? Internally, the lines are homogeneous. And 
externally, their relationship is arbitrary. This is how it is for lines in any 
arrangement. I just can’t be sure how many. Lines aren’t numerically distinct 
like points. They fuse and divide freely. I can draw two lines to make a Greek 
cross 

and then see alternating pairs of L’s 

or I can turn this around and draw L’s — two or more — and see a Greek cross. 
Nevertheless, I’ve decided to calculate. So I’ve got to define points explicitly 
in whatever way I can think up according to my present interests and goals. 
Right now, I’m looking for triangles. Is this circular reasoning or what? 
Reasoning obviously comes in shapes of various kinds. If I look the right way, 
this circle appears almost hermeneutic. I’ve got to find triangles to define a 
rule to find triangles, or something along these lines. Seeing and calculating 
are linked. That’s for sure. But perhaps their relationship is not what I want. 
Seeing may be finished — completed if not done for — before I calculate at 
all. What would calculating be like if there were no problem to solve before 
calculating to solve a problem? 

And second, after I determine these points, I have to keep to them for 
as long as I calculate. There’s no way to start over with another analysis. I’m 
told constantly that it’s cheating if I do. It’s incoherent. (Emerson is famous 
for the opposite view. ‘A foolish consistency is the hobgoblin of little minds 
. . . With consistency a great soul has simply nothing to do.’ Today the first 
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sentence is only a cliché. As a student I used it as a reason to be silly. But the 
following sentence is the real clincher. If the analysis I’ve already got is a 
special description that controls my ongoing experience, then what am I free 
to do? There are no surprises left. Why not change my mind? What stops me 
from seeing something new? I can’t imagine a consistency that’s not foolish 
sooner or later if I calculate with shapes. What I see may alter erratically.) 
There’s an underlying description of the shape 

that depends on how I’ve defined constituents before I begin to calculate. The 
description isn’t anywhere to see. It’s hidden out of sight and isn’t supposed 
to intrude. Only it limits everything I do and everything I see. There’s no 
problem, so long as I continue to experience the same things and my goals stay 
the same — if nothing ever changes. Otherwise, it’s nearly impossible to try 
anything new — to erase lines or find Y’s — and not run into trouble. 

Evans isn’t entirely to blame for this choice of embedding relation. 
He uses concepts like ‘three lines are a triangle’ to describe what he sees in the 
expected way when it comes to making computer models. This amounts to the 
following: take things that aren’t zero dimensional and go calculate with them 
as if they were. There are abundant examples of this — from computer graphics, 
imaging, and fractal modeling, to engineering analysis and weather forecasting, 
to complex adaptive systems of every kind. Finite elements — atoms, 
components, lowest level constituents, primitives, units, etc. — are combined 
to describe things that aren’t sensibly divided. It’s a very powerful method 
with an ancient history and an amazing record of success. It’s what most 
thinking is like at MIT, and it works like magic. That’s right, it’s an illusion. It 
may be exposed when calculating and sensible experience are asked to agree 
too closely. Only this isn’t new. James has his own examples of the ‘many 
ways in which the conceptual transformation of perceptual experience makes 
it less comprehensible than ever.’  Have I taken a wrong turn? Maybe there’s 
no such thing as visual calculating. Are clear negative examples reason to 
give up, or reason to try another way? What kind of evidence would count 
otherwise? I have to show that analysis isn’t something you do first in order to 
calculate, but rather something that changes or evolves — even discontinuously 
— as one of the by-products of calculating. Analysis develops as calculating 
goes on. What I do while I calculate and not before — what rules I’ve got and 
what I do with them — determines what constituents are. 
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When is calculating visual? 

Sometimes I try an informal rule of thumb to decide when calculating 
is visual. Both the dimension (dim) of the elements (el) and the dimension of 
the embedding relation (em) used to calculate are the same. I can state this in 
a nifty little formula that’s a good mnemonic: 

dim(el) = dim(em) 

I’m pretty sure the rule is sufficient: whenever my formula is satisfied, it’s 
visual calculating. I’m just not so sure the rule is necessary. There may be 
examples of visual calculating that don’t meet this standard. Whatever the 
answer — and I’m ready to bet on the formula — I want the equivalence 
(biconditional) 

dim(el) = 0 ≡ dim(em) = 0 

to be satisfied, to ensure that zero dimensional embedding relations are only 
used with zero dimensional elements. 

As formulas go, mine is pretty vague. I don’t say how to evaluate 
either side except in a few ad hoc cases. But all of my examples of visual 
calculating are synthetic, so the formula is enough for the time being. There’s 
no reason to avoid vague ideas when they stimulate calculating. In fact, 
vagueness may be indispensable to what I’m trying to show. I can’t imagine 
anything vaguer — or more ambiguous — than a shape that isn’t divided 
(analyzed) into constituents, so that it’s without definite parts and any obvious 
purpose. I’m going to use my formula to get to the idea that calculating is 
visual if it can deal with shapes like this. I want to use rules to determine what 
parts I see and what I can say about them, and to allow for what I see and what 
I say to change freely as I calculate. And I want this to happen every time I try 
a rule. I’m told calculating is a good example of what it means to be discursive: 
sometimes when I calculate it looks logical, but most of the time it’s only 
desultory rambling with my eyes. Shapes should be ambiguous and vague, 
and ready to use when I calculate. 

So what can I do to make Evans’s example visual? My formula 
provides twin options. I can change the elements in Evans’s shape from lines 
to points, so that dim(el) = dim(em), or I can use another embedding relation 
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that’s one dimensional. Each of these alternatives is feasible and amply rewards 
further attention. 

Suppose that the shape 

is the nine points Evans uses to define line segments as constituents 

and that the embedding relation is unchanged: it continues to require identity 
among constituents. I really don’t have too much choice. There’s no other 
way to do embedding for points. (To be exact, I’m going to calculate with 
shapes in the algebra U

0 2
.) 

I can use the rule 

Three points → Triangle 

in place of Evans’s rule to define 45° right triangles 

Or equivalently, I can give the rule in this identity 

in the way I normally do, where two shapes — in this case, they’re the same — 
are separated by an arrow. I’ll say more about rules like this a little later on 
when I look at embedding for lines. My new rule in whatever form finds 28 
different triangles in the shape 

17




�� 

G. STINY


including the 16 from Evans’s example. But there are 48 other triangles in the 
shape in five different constellations 

�� �� � � � 

These are readily defined in additional rules. (Of course, it’s easy to define all 
triangles using a single rule in the way Evans does, or as effortlessly, using a 
schema for rules in my way. This is also something I’ll come back to again.) I 
can’t find any other triangles. My grammar is seeing what I do. 

Now what happens when I erase points or look for Y’s? In the first 
case, my rule is just like it was before, but for points 

Point → 

Or equivalently 

When I apply the rule to erase the vertices of Evans’s small triangles, the 
shape disappears the way it should. And if I do the same for medium triangles 
and for large ones, then I get the shapes 

Everything looks fine, even if the Greek cross appears in alternative ways. In 
fact, this may be an advantage. I can decide whether I’ve erased the vertices 
of medium triangles or large ones simply by looking. There’s nothing to see 
that I can’t understand. Points aren’t like lines. They don’t fill in for the loss 
of others because they don’t combine to make other points and don’t contain 
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them. The grammar I’ve got for points is doing a lot better than Evans’s 
grammar for lines. Visual calculating may be a real possibility after all. 

But what about Y’s 

with equilateral arms that are defined in this rule 

Four points → Y 

or with the identity 

There’s no problem. I can’t see the Y anywhere in my shape. It’s possible 
there are other kinds of Y’s — I can define additional rules to find them — but 
their arms are different lengths 

Calculating and seeing match again. This time with uncanny precision. 

So here I am with the shape 

that’s just what calculating tells me it is. Nothing is hidden. Anything a rule 
can find, I can see. And what I see depends on the rule I apply. There’s 
nothing to see that a rule can’t find. This is just what I had in mind for visual 
calculating. But my example isn’t completely convincing. Everything works 
because the shape contains points — lowest level constituents again — that 
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don’t interact. They’re independent in combination: embedding means identity. 
The whole thing is a strictly combinatorial affair — points are like marbles 
ready to count — and seeing is simply a matter of combining and rearranging 
them in alternative ways. Surely, there’s more to seeing than counting. To see 
what it is, I have to go back to lines and change the embedding relation somehow, 
so that it’s not merely identity. 

Suppose I keep Evans’s shape the same 

I can draw it with eight lines — its maximal elements — the way an experienced 
draftsman would — only four of Evans’s triangles are explicitly defined — 
but I’m not obliged to treat these lines as constituents. The parts of the shape 
may be combinations of maximal elements, or including everything I can, 
combinations of elements or their segments. Now there are indefinitely many 
parts, and none is preferred to any other. This is in fact the potential infinite of 
Aristotle — I’m free to divide the shape wherever I like — and not an actual 
infinite of parts that have been collected together. The parts I see — the limited 
number I resolve when I divide the shape — depend on the rules I’ve got and 
how I use them. I need to have an embedding relation for this that’s one 
dimensional and works for lines. 

Let’s agree that a line l is embedded in any other line l’ if l and l’ are 
identical or — going beyond embedding for points — l is a segment of l’ 

�� 

More generally, a shape M is part of any shape S if the maximal elements of M 
are embedded in maximal elements of S. (I was drawn to this relation by 
necessity. When I started using a typewriter — I was eleven or so — I contrived 
an easy way to check my work against an original or if I had to retype a page to 
correct mistakes and not make more. Proofreading was hard. It took too long 
and was unreliable. So I’d embed one page in another. I’d tape the first to a 
window and move my copy over it. I could see what was on both pages at 
once. If things that were supposed to be the same lined up — at least piecewise 
— then I knew my typing was all right. Creative designers use yellow tracing 
paper in like ways whether or not they apply rules.) Whatever I can see in S — 
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anything I can trace — is one of its parts. This leads straight to calculating in 
the algebras of shapes U

i j
, and is almost exactly what James has in mind when 

he describes how reasoning works. For the rule M → P and the shape S, if I 
can see M in S, then I can replace it with another shape P by subtracting M 
from S and adding P.  I’ll add by drawing shapes together, so that their maximal 
elements fuse. And I’ll subtract by adding shapes and then erasing one, so that 
segments of maximal elements are removed. Remarkably, the embedding 
relation implies nearly everything I need in order to do all of this with axiomatic 
precision. I also need transformations of some kind to complete the 
correspondence between M and P, and S. But I’ll skip the details because 
they’re not hard to fill in, even if they’re not without many important 
consequences. (Now I’m ready to calculate in the algebra U

1 2
 instead of the 

algebra U
0 2

. And I’ll do everything in U
1 2

 from now on.) 

With lines and this embedding relation, Evans’s rule to define triangles 
is simply the identity 

�� 

I don’t have to say what a triangle is in terms of constituents that are already 
given. I only have to draw it. It makes no sense to have the rule 

Three lines → Triangle 

because I don’t know how the sides of triangles are divided — remember, 
there’s no telling how many lines there are in a shape — or even if sides are 
parts. And I don’t have to divide Evans’s shape into constituents either for the 
identity to apply in the way I want to find every triangle. The shape is OK as 
a drawing, too 

When I use the identity, there are 16 triangles — this is just what I see — even 
though the small triangles and the medium ones have maximal elements that 
aren’t maximal elements in the shape. My erasing rule — the one I added to 
Evans’s grammar — is 
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and it produces the results I get if I erase the lines I see by hand. If I apply the 
rule to the sides of small triangles, the shape disappears. And when I use it to 
take away the sides of medium or large triangles, I get the Greek cross 

This is the way it’s supposed to work — seeing and calculating agree perfectly. 
When I see a part and change it according to a rule, there’s nothing hidden to 
confuse the result. Whatever distinctions a rule makes, I can see. There may 
be surprises — there are plenty to come — but they aren’t artificial ones caused 
because I’ve misrepresented shapes with constituents that I can’t redefine after 
I’ve started to calculate. There’s no underlying analysis that determines what 
I can see and what I can do. Whatever is surprising is perceptual. It’s a natural 
part of sensible experience. And the rule 

�� 

— another identity — finds as many Y’s in the shape as there are to see. 
Seeing is never disappointed. There’s no part I can see that a rule can’t find. 
Novelty is always possible. What you see is what you get. 

It may be useful to stop briefly to compare Evan’s example for points 
and for lines. For points, there are finitely many parts for rules to find, but for 
lines, there are indefinitely many parts. This is evident for Y’s, and 
fundamentally so for the rules 

While the one can only be used a limited number of times, the other’s work 
may never be done. A point — just like a constituent — can be erased in 
exactly one way. I can’t remove some of it now and some of it later. It goes all 
at once. It’s there or it’s not. But I can divide a line wherever I like. I can take 
any piece now and another piece later. Its segments provide endless 
possibilities. Points and lines just aren’t the same with their distinct dimensions 
and their corresponding embedding relations. If I confuse them in order to 
calculate, then I’m simply not calculating visually. 

22




WHEN IS REASONING VISUAL


But there’s a lot more. What about the constituents of the shape 

How do these change as I calculate, and how are they finally defined? This is 
Evans’s problem in reverse. He has to divide the shape before calculating, so 
that his rule can find all of the triangles there are to see. This analysis isn’t 
part of calculating. It’s more important. It’s what makes calculating possible. 
I’d like to know how to define constituents, but Evans doesn’t say. He probably 
doesn’t think about it. It’s just something you do when you’re going to calculate. 
Even if it’s obvious, I’d like to see what’s involved. And it may not be obvious. 
Evans gives 24 constituents when 22 will do. So I’ll take a different tack and 
show how to define constituents as part of calculating. I’m not stuck the way 
Evans is. I can look at everything — including analysis — as the result of 
applying rules. This is what I said visual calculating should do. 

Let’s start with something easy. I want to use the rule 

�� 

to calculate, so that constituents are defined dynamically again and again in an 
ongoing process. The rule is an identity: it simply tells me a triangle is a 
triangle without referring to its sides — Evans’s definition — or any other 
parts. I can’t say anything about a shape in a rule — identity or not — that 
goes much further than pointing to it and announcing that it’s that. I can name 
it — a triangle is a triangle — but there’s nothing definite about its parts. I’ll 
say more about this and what it means for visual calculating and reasoning 
itself as soon as I get to schemas for rules. Right now, though, I only have my 
identity for triangles. What good is it to know that a triangle is a triangle? 

Identities are interesting rules. Rules are supposed to change things, 
but identities don’t. Whenever they’re used to calculate — let’s apply one or 
more to a shape S a number of times — the result is a monotonous series that 
looks like this 

S ⇒ S ⇒ . . . ⇒ S 

In each step (S ⇒ S), another part of S is resolved — that’s the part I see — 
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and then nothing else happens. The shape doesn’t change. It stays the same. 
At least that’s how it looks. Identities are constructively worthless. They 
have no use. And it’s standard practice to discard them. But this may be rash. 
It misses what they really do. There’s far more to identities than idle repetition. 
Identities are observational devices. They’re all I need to divide the shape S 
with respect to what I see. If I record the parts they pick out as they’re tried, 
then I can define topologies for S that show its constituents and how they 
change as I calculate. 

Suppose I apply the identity 

�� 

to the shape 

so that large triangles are picked out in a clockwise fashion in this four step 
series 

If I take the triangles the identity resolves — remember, these are the triangles 
I see — I can use them to define constituents. I’m going to calculate some 
more to explain how I’ve been calculating. There are a number of ways to do 
this. For example, I can work out sums and products, or I can add complements 
as well. Complements give Boolean algebras for the shape. They’re a special 
kind of topology with atoms that provide a neat inventory of constituents. 

The first time I apply the identity to calculate, I get a Boolean algebra 
with two atoms 
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I see a triangle and it’s complement. It may be a little farfetched to assume 
that I see the shape 

— I have a hard time making sense of it — but complements are sometimes 
like this. They’re surely worth the added effort, though, because they simplify 
things as I go on. There are four atoms when I apply the identity the second 
time 

Now I see a pair of triangles and their complements that combine in products 
to define constituents. And there are seven atoms the third and fourth times I 
use the identity 

including the six individual sides of the large triangles and the interior Greek 
cross. This is all pretty good. The constituents I finally get match my visual 
expectations. The sides of the triangles interact, while the Greek cross is an 
independent figure. 

Of course, there are also medium and small triangles in the shape 
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And I can apply the identity 

�� 

to find these triangles in exactly the same way. Medium triangles — if I 
resolve all of them — define nine constituents 

and small triangles — again, if I resolve all of them — define 16 

The atoms I get for the small triangles — the half lines in Evans’s 
example — are the most refined constituents I can define, no matter how the 
identity is used to pick out triangles. All of the large triangles in the shape 
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contain six constituents, all of the medium triangles are made up of four, and 
all of the small triangles are made up of three 

But this doesn’t mean — as it did in Evans’s example — that triangles have to 
be described (represented) in different ways for the identity to work as it’s 
meant to. For the identity 

�� 

the embedding relation is given for lines, so that they can fuse and divide in 
any way whatsoever, but for Evans’s rule 

Three lines → Triangle 

embedding requires that constituents — they neither fuse nor divide — match 
in an exact correspondence, as elements do in sets. Perhaps this is another 
way of seeing it. A shape — at least with lines — is not a set. 

The identity applies to shapes, not to their descriptions. As far as the 
identity is concerned, a triangle is whatever I draw. It’s simply this 

with no divisions of any kind: no sides, no angles, and no anything else. And 
it’s always there to see if it can be embedded. Evans gets into trouble because 
of the way he calculates. He confuses a triangle — something sensible — 
with a solitary description — an abstract definition — that’s only one of many. 
This is the kind of thing that can happen if my formula dim(el) = dim(em) isn’t 
satisfied, and in particular, if the embedding relation is zero dimensional and 
elements aren’t. Shapes and descriptions are different sorts of things. But 
more important, I can calculate with shapes without referring to their 
descriptions. This idea provides another way to think about visual calculating. 
But first, let’s look at an example that shows a little more of what’s at stake. It 
begins to fill in the picture for rules that aren’t identities. 
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A second look at calculating 

I’m positive that some of you have already seen the following example. 
Nevertheless, I’m going to show it again. Seeing something for a second or 
third time with altered emphasis may bring increased insight. After all, I’m 
dealing with shapes. And I want you to see how shapes are redescribed as I 
calculate. There’s no given way to see shapes that rules can’t change when 
they’re tried. The ability to handle ongoing changes like this — there’s always 
going to be a chance for more, even with only a single rule — is what makes 
calculating visual. 

The rule 

�� 

rotates an equilateral triangle about its center, so that this point is permanently 
fixed. I can apply the rule eight times to define the shapes in this series 

It’s easy to see that the final shape in the series is a rotation of the initial shape 
about its center. So far, so good. But If you think about it, this simply can’t be 
right. The centers of the triangles in the initial shape change position as the 
initial shape is rotated 

The rule doesn’t move the centers of triangles, but they move anyhow. What’s 
going on? How did this happen? It’s more than a surprise. It’s a new kind of 
paradox. (Often when I describe the series, I’m accused of faking the rotation. 
An MIT engineering professor thought so — his colleague lost his head fixing 
a translation device — and others have, too. What fun!) 

The answer is something to see. The rule can be applied to the fourth 
shape in the series in alternative ways. In one way, the rule picks out the three 
triangles that correspond to the three triangles in the initial shape. But none of 
these triangles is resolved in the other way. Instead, the rule divides the fourth 
shape into two triangles — the large outside triangle and the small inside one 
— that have sides formed from sides of the three triangles that come from the 
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are all made up of triangles. Their numbers summarize the action of the rule 
as it’s applied from step to step. 
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The first series shows the maximum number of triangles — these can be picked 
out using an identity — in each of the shapes. The next series gives the number 
of triangles in a shape after the rule has been applied, and the last series gives 
the number of triangles in a shape as the rule is being applied. 
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ones in the initial shape. The rule rotates the two triangles in turn to get the 
fifth and sixth shapes. 
sixth shape in the series. 
correspond to the ones in the fourth shape, or the three triangles — one at each 
corner of the sixth shape — that have sides formed from segments of sides of 
the triangles in this pair. The rule rotates the three corner triangles one at a 
time to reach the final shape. 

Twice in this process, the rule changes what I see in a surprising way. 
Whenever lines are combined, they fuse, so that all prior divisions disappear. 
Then new divisions are possible anywhere. 
and so redescribe the shape — according to how I apply the rule. The way the 
rule works makes this feasible as I’m calculating, without outside intervention. 
I’m embedding triangles to determine parts — tracing them out — not matching 
predefined constituents. The rule applies neither locally — as it appears to at 
first — nor globally — as it appears to in different ways later on — but anywhere 
there are triangles independent of how they were actually made. 
lines fuse, there’s no history I can use to tell parts apart. s all visual. And 
it’s all calculating. 
‘emergent’ properties are usually described in cellular automata and complex 
adaptive systems of other kinds. s not done with the same rules given to 
calculate. When I calculate, there’s no reason to appeal to anything more than 
rules.) 

The nine shapes in the series 

Look at the following three series 

In both of these 

Now the rule can be applied in alternative ways to the 
Either the rule resolves both of the triangles that 

I can always redefine triangles — 

So long as 
It’

(It may be elucidating to compare this with the way 

It’
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cases, the number of triangles depends on what the rule does either by rotating 
an existing triangle or seeing a new one to rotate, and then counting in terms of 
the triangle and its complement. The resulting inconsistencies in the fourth 
and sixth shapes tell the story. There’s no saying how many triangles there are 
until the rule is applied. There are triangles in both shapes — no one doubts it 
— but they’re not numerically distinct. Counting goes awry: two triangles 
just can’t be three, and neither number is five. (It’s only blind luck that two 
and three make five. In many cases, there’s no easy relationship like this.) 
The process looks discontinuous — there’s a saltation: three triangles are two 
and two are three — but it’s not. Shapes can always be described in alternative 
ways, and welcome different descriptions indifferently. The parts I see may 
alter erratically either in number or by kind at anytime. 

I can describe the shapes in the series as topologies, so that the rotation 
from the initial shape to the final shape is continuous. This also shows how 
the shapes are divided into constituents as a result of applying the rule to 
calculate. In particular, there are Boolean algebras for the shapes with the 
atoms given in Table 2. 

___________________________________________________________________ 

Table 2 

Constituents Defined by Calculating 

Shapes 

Atoms 

___________________________________________________________________ 
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The atoms are defined retrospectively. To quote Kierkegaard — via 
James — ‘We live [calculate] forwards, but we understand backwards.’  I 
begin with the final shape and then work back to the initial shape. The final 
shape has no noticeable structure. It’s an atom itself as it’s not divided by the 
rule. But each preceding shape has the triangle resolved by the rule as an 
atom, and other atoms to form its complement and to ensure continuity going 
forward. 

This probably sounds a little obscure — I know I mentioned 
Kierkegaard — but really I’m simply calculating again to explain how I’ve 
been calculating. And the idea is clear once it’s tried. Its value as an account 
of how I calculate is easy to see if I record the divisions in the triangle in the 
right side of the rule 

�� 

formed with respect to constituents (atoms) in Table 2. The triangle is divided 
in alternative ways in the eight steps of the series 

The parts defined in the triangle combine sequentially to build up the different 
triangles that the rule picks out in its subsequent applications. The pieces 

from the first three triangles combine in this way 

and the remaining sides 

combine in this way 
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to define constituents of the second and third shapes in the series, and at last 
the large outside triangle and the small inside one in the fourth shape. And the 
pieces in the fourth and fifth triangles combine in like fashion to make the 
three triangles in the sixth shape that are needed for the production of the final 
shape. Looking forward, the constituents of the shapes in the series anticipate 
what the rule is going to do the next time it’s applied. But this isn’t divination. 
It happens because constituents are only given as an afterthought. Whenever 
calculating stops, I can describe what’s gone on as a continuous process in 
which shapes are assembled piece by piece in an orderly way. This makes a 
good story and a good explanation. It’s the kind of retrospective narrative I 
hear all of the time from people doing creative work. 

Every time the rule 

�� 

is tried, its right side is divided with respect to different constituents. The way 
I describe what I’m doing changes as I calculate — it’s merely an artifact of 
what I’m trying for the time being — so I can always go on and calculate some 
more. Nothing prevents me from seeing things again. I’m free to fuse old 
divisions and make new ones. 

How descriptions of shapes change is highlighted in another way when 
I use schemas to define rules. A rule schema 

x → y 

is a pair of variables x and y that take shapes as values. These are given in an 
assignment g that satisfies a predicate. Whenever g is used, a rule 

g(x) → g(y) 

is defined. The rule then applies as usual, as if it were given explicitly from 
the start. This works to express a host of intuitive ideas about shapes and how 
to change them. 

Schemas can be very general. In fact, I can give one for all rules. I 
only have to say that x and y are shapes. But usually schemas have a more 
refined purpose. Here’s a rule 
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defined in a schema x → y that produces the shape 

and others of the same kind formed when polygons are inscribed in polygons. 
An assignment g gives values to the variables x and y that fulfill this predicate: 

x is a polygon with n sides, and y = x + z, where z is a polygon 
with n sides inscribed in x. 

The predicate can be elaborated in much greater detail — for example, I could 
say something more about polygons being convex, etc. and then go on to say 
that the vertices of z are points on the sides of x, etc. — but this isn’t necessary 
to see how schemas work. It’s enough to have the two variables x and y, and 
the assignment g. 

It’s interesting to note also that the schema produces shapes that can 
be used in examples like the one above in which the shape 

is rotated by rotating individual triangles. (The different things that can happen 
vary with the Fibonacci number determined by the number of polygons that 
are inscribed one in another.) This shows, too, that my predicate is far from 
unique. In fact, it’s true for any predicate — and in particular, for any predicate 
for shapes with basic elements of dimension one or more — that there are 
indefinitely many others equivalent to it. 

The specific alternative I have in mind should be obvious. I can change 
the predicate, so that y is n triangles rather than two polygons. This determines 
exactly the same rules, but with some interesting twists. In this series of shapes 

�� 

� 
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I use the schema to change a quadrilateral after applying the schema to replace 
a quadrilateral with triangles. I go from four triangles to a quadrilateral and 
four smaller triangles by changing a quadrilateral that’s inscribed in a 
quadrilateral. Where did the quadrilaterals come from? I thought I had four 
triangles. I said it before. The parts I see aren’t fixed. They may change at 
anytime in number or by kind. How I describe a rule and the shape to which it 
applies needn’t agree. I can fool around with descriptions as long as I like, to 
get the results I want in a sensible way. Rules apply to shapes and not to their 
descriptions. 

This sounds all wrong. How can calculating be so confused? Definite 
descriptions define the shapes in a rule g(x) → g(y). But the description of 
g(x) may be incompatible with the description I have for the shape to which 
the rule applies. It’s just not calculating if these descriptions don’t match. But 
what law says that shapes must be described consistently to calculate. The 
shape g(x) may have indefinitely many descriptions besides the description 
that defines it. But none of these descriptions is final. The embedding relation 
works for parts of shapes — not for descriptions of shapes — when I try the 
rule. My account of how I calculate may use as many descriptions as I like 
that jump from here to there erratically. It may sound nuts or irrational while 
I’m doing it. But whether or not there’s a favorable conclusion with useful 
results doesn’t depend on this. I can always tidy up after I’ve finished 
calculating, so that I have a retrospective explanation that’s consistent. 
Rationality is a sentiment to end with. 

So when is calculating visual? I have another answer that may be 
better than my formula dim(el) = dim(em). 

Calculating is visual when descriptions don’t count. 

Descriptions aren’t binding. There’s no reason to stick with any of them that’s 
not just prejudice. I’m happy with this, but I’m not sure everyone will be 
happy with what it does to reasoning. I use rules to calculate, but I don’t have 
to play by them. I can cheat. And I can get away with it. I’m totally free to 
change my mind about what there is, and I’m free to act on it. (Children play 
games in this way, unless we intervene and make them follow the rules. Only 
suppose they already do.) There are no definitions to conform to, and there’s 
no vocabulary to build from. Constituents, atoms, components, primitives, 
units, and the rest are merely afterthoughts. But is this going too far? What 
makes me think I’m calculating? And if I’m not, what’s reasoning all about? 
Visual calculating is crazy. 
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What’s that or how many? 

I confess. I really don’t know what reasoning is, and I’m not totally 
sure about calculating. I don’t think James would have any problem with 
what I’ve been saying, either as calculating or as reasoning. But others may 
demur for one reason or another. Not everyone is ready and willing to allow 
as much as James — to encourage different points of view and to welcome the 
novelty they bring — when there’s thinking to do. There’s always a right way 
and a wrong way, no doubt about it. 

All ways of conceiving a concrete fact, if they are true ways at all, 
are equally true ways. There is no property ABSOLUTELY essential 
to any one thing. The same property which figures as the essence of 
a thing on one occasion becomes a very inessential feature upon 
another. 

Meanwhile the reality overflows these purposes at every pore. 

. . . the only meaning of essence is teleological . . . classification 
and conception are purely teleological weapons of the mind. 

The properties which are important vary from man to man and from 
hour to hour. 

Reasoning is always for a subjective interest, to attain some particular 
conclusion, or to gratify some special curiosity. It not only breaks 
up the datum placed before it and conceives it abstractly; it must 
conceive it rightly too; and conceiving it rightly means conceiving it 
by that one particular abstract character which leads to the one sort 
of conclusion which it is the reasoner’s temporary interest to attain. 

I may change occasions more rapidly than James expects moving freely among 
parts whether they’re details or overall features. I change occasions every 
time I apply a rule M → P to calculate: when I embed M and infer (introduce) 
P. And I string all of these occasions together in an ongoing series to produce 
useful but not necessarily logical (consistent) results. Nothing says my 
temporary interests aren’t evanescent and arbitrarily linked. I think this is 
why visual calculating and reasoning can be a lot more effective in practice 
than calculating and reasoning in some other way. Their appeal to seeing — 
to sensible concrete experience — puts the ability to deal with novelty — ‘the 
technical differentia of reasoning’ — at the center of creative activity. 
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Some other famous thinkers, however, aren’t so sure that my kind of 
calculating with shapes — where rules automatically redefine parts as they 
apply — is really calculating. Ludwig Wittgenstein notices that numbers and 
shapes don’t add up in the same way — there’s a distinct difference between 
calculating and visual calculating — and he suggests his observation shows 
how ‘mathematics is normative’. 

An addition of shapes together, so that some of the edges 
fuse, plays a very small part in our life. — As when 

and 

yield the figure 

But if this were an important operation, our ordinary concept of 
arithmetical addition would perhaps be different. 

Let us imagine that while we were calculating the figures 
on paper altered erratically. A 1 would suddenly become a 6 and 
then a 5 and then again a 1 and so on. And I want to assume that this 
does not make any difference to the calculation because, as soon as 
I read a figure in order to calculate with it or to apply it, it once more 
becomes the one that we have in our calculating. At the same time, 
however, one can see quite well how the figures change during the 
calculations; but we are trained not to worry about this. 

Of course, even if we do not make the above assumption, 
this calculation could lead to usable results. 

Here we calculate strictly according to rules, yet this result 
does not have to come out. — I am assuming that we see no sort of 
regularity in the alteration of figures. 

Now you might of course say: “In this case the manipulation 
of figures according to rules is not calculation.” 

Wittgenstein’s curious manipulations in which figures alter erratically 
of their own accord and calculating with shapes have a common look and feel. 
It’s uncanny. And just as the one may skirt the comfortable norms of calculating, 
so too may the other. Of course, norms may be effective or not. At first, 
Wittgenstein is tempted to limit what can change and simply go on with business 
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as usual. He’s surprisingly explicit about this. 

And I want to assume that this does not make any difference to the 
calculation because, as soon as I read a figure in order to calculate 
with it or to apply it, it once more becomes the one that we have in 
our calculating. 

Wittgenstein’s instinctive response is conservative. He keeps to the law that 
keeps everything the same, the same as the rest of us. I count on figures to 
behave themselves when I use them to calculate. This comes from training. 
(There are the basics — predefined constituents and their combinations — 
tough standards, and tests to make sure that schools and students are accountable 
for teaching and learning. How basic are basics that have to be taught and 
tested? The need for standards is to exclude anything different. They limit 
present experience to what seemed to work in the past. Any prospect of novelty 
is gone. There are no surprises. Nothing is ambiguous or vague. This is the 
end of anxiety and uncertainty, and makes it unnecessary to trust others and 
give them a chance. But is it a sensible way to educate people to recognize 
and exploit new opportunities? What good are my rules now? Of course, 
training needn’t limit experience. It may be open-ended — for example, in 
studio instruction and situated learning. In the latter, master and apprentice 
interact during actual practice. They work on the same thing without having 
to see it in the same way. There’s no underlying structure controlling the 
process: ‘structure is more the variable outcome of action than it’s invariant 
precondition.’ This is like visual calculating.) Yet rigorous training may not 
be necessary for a successful (creative or novel) conclusion when I calculate: 

. . . even if we do not make the above assumption, this calculation 
could lead to usable results. 

Ignoring ‘the above assumption’ is what visual calculating is all about. Whether 
or not you think it’s real calculating doesn’t really matter. But the ambiguity 
cuts in opposing ways: once to explain why greater attention hasn’t been focused 
on visual calculating as a useful alternative to calculating with numbers — the 
one isn’t calculating — and then again to explain why it’s so easy to think that 
visual calculating is necessarily the same as calculating in the ordinary way. I 
like to calculate by seeing. But whenever I try, either no one believes it or they 
think I’m doing something else. Perhaps I’m just wasting my time when it 
comes to visual calculating. Only what else can I do if I want to see how far 
reasoning goes. There’s always something else to see. 
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I haven’t clarified anything yet. Calculating and reasoning — visual 
or not — appear no better off than shapes. They’re just as vague and ambiguous. 
But others have thought about this, and draw distinctions in many alternative 
ways. Everybody knows that Marvin Minsky — Evans was his student at 
MIT — thinks calculating and reasoning are the same thing. What he says 
about creativity is telling. 

What is creativity? How do people get new ideas? Most 
thinkers would agree that some of the secret lies in finding “new 
ways to look at things.” We’ve just seen how to use the Body-Support 
concept to reformulate descriptions of some spatial forms . . . let’s 
look more carefully at how we made those four different arches seem 
the same, by making each of them seem to match “a thing supported 
by two legs.” In the case of Single-Arch, we did this by imagining 
some boundaries that weren’t really there: this served to break a 
single object into three. 

�������
� ����������������������������������� 

However, we dealt with Tower-Arch by doing quite the 
opposite: we treated some real boundaries as though they did not 
exist: 
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How cavalier a way to treat the world, to see three different 
things as one and to represent one thing as three! 

Minsky echoes James with a neat example. In fact for James, ‘Genius, 
in truth, means little more than the faculty of perceiving in an unhabitual way.’ 
Yes, Minsky welcomes alternative descriptions and knows just how daring 
(cavalier) an idea this is. But he may be uneasy about it. Elsewhere, he’s 
ready to apply ‘radically different kinds of analysis to the same situation’ and 
is convinced that Thomas Kuhn’s paradigm switches occur again and again in 
everyday thought. This still sounds a lot like James. Only Minsky shies and 
retreats to the security of constituents and combinations. He splits thinking in 
two: an initial analysis of ‘elements’ — how is this done? — and an independent 
heuristic search in which ‘elements are combined in different ways until a 
configuration is reached that passes some sort of test.’ This is how computer 
models are supposed to work, and it’s not too far off the dull sort of education 
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I just described. How useful is analysis before search begins? What happens 
when rules apply to shapes? There’s a paradigm (gestalt) switch every time a 
rule is tried. The elements of analysis aren’t given beforehand but change as 
calculating goes on. Minsky’s arches support this. They furnish the standard 
that shows what it means to be static, and much more. The statics of arches — 
‘the Body-Support concept’ — works consistently in different cases because 
arches aren’t static. Shapes are never static. They’re unstable. They fuse in 
combination, so that new divisions are always possible. Elements, 
configurations, and tests aren’t the way to deal with this kind of ambiguity. 
How well does Evans’s grammar work? There’s an initial analysis to define 
constituents followed by a search in which a heuristic — try configurations 
with three lines — and a test — is it a polygon? — are involved. Everything 
is askew if lines are taken for points that can be counted. Heuristic search is 
senseless once analysis — seeing — stops. 

Minsky starts out in the right direction only to make a wrong turn. 
He’s lost. He’s sure quantitative models of reasoning are inadequate. This is 
fine. Visual calculating — everybody knows it’s qualitative — may be an 
alternative worth searching for. Yet Minsky’s reason to find something new is 
baffling. A number-like magnitude ‘is too structureless and uninformative to 
permit further analysis . . . A number cannot reflect the considerations that 
formed it.’ OK, but this is also true for shapes. It lets me divide them freely 
when I apply rules. The opposite assumes a law of conservation — Wittgenstein 
shows this — to uphold decisions I’ve made in the past, to recognize (remember) 
what I did before and act on it heedless of anything else that may come up. 
(Memory isn’t something to forget when buying a computer or thinking about 
thinking. Plato considers memory a good source of ideas. Suppose I have a 
computer with the memory to store all of the information I might ever use — 
important facts and right definitions of things like triangles. Would it help me 
think? It may take care of learning — there’s no reason not to be optimistic — 
but there’s still sagacity — raw creativity. Who wants to visit www.plato.edu 
or invest in one of its .com counterparts?) This looks away from visual 
calculating to calculating in the way we’ve been trained. I’m stuck. Visual 
calculating isn’t calculating or it’s misunderstood. 

The idea that I can change how I describe things when I apply rules is 
at the heart of visual calculating, but it seems it’s an idea that’s not easy to 
accept or to use. And in fact, it would be easy to dismiss if it only had roots in 
sensible experience that’s superficial and without any deep structure. Art and 
such are important, but science is what really counts. It’s lucky that things 

39




G. STINY 

aren’t always how they appear at first. It’s an idea strongly rooted in science 
as well. Hilary Putnam tells the story. 

Since the end of the nineteenth century science itself has begun to 
take on a ‘non-classical’ — that is, a non-seventeenth-century-
appearance. [Earlier] I described the phenomenon of conceptual 
relativity — one which has simple illustrations, like [mine for a few 
individuals], but which has become pervasive in contemporary 
science. That there are ways of describing what are (in some way) 
the ‘same facts’ which are (in some way) ‘equivalent’ but also (in 
some way) ‘incompatible’ is a strikingly non-classical phenomenon. 
Yet contemporary logicians and meaning theorists generally 
philosophize as if it did not exist. 

This contains a good description of the shapes in the series 

that are produced when I use the rule 

�� 

to calculate. In particular, the fourth shape and the sixth shape are equivalent 
— they’re congruent — but are incompatible with respect to their parts. The 
fourth shape is two nested triangles: that’s how I get to the sixth shape. And 
the sixth shape is three corner triangles: that’s how I get to the final shape. 
Indeed, this is a striking way to calculate. That it’s outside of the interests of 
logic is no big surprise. I said at the beginning that I wasn’t too fond of logic 
and would try to avoid it. This only settles my decision. Others who have 
thought about visual reasoning — for instance, Susanne Langer — look at 
logic in roughly the same way. (Langer distinguishes ‘presentational’ and 
‘discursive’ forms. The one deals with sensible experience, while the other 
sticks with units (constituents) and their combinations.) But Putnam isn’t 
worried about what logicians ignore. He wants to make sense of this non-
classical phenomenon. And what he says resonates with what I’ve been trying 
to say about visual calculating. 

Putnam makes two important points. One works with visual 
calculating, and the other does — when it goes against convention — and 
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doesn’t — when it relies on counting. I’m not concerned if numbers alter 
without rhyme or reason while I calculate. Putnam’s first point is this: 

. . . [the] phenomenon [of conceptual relativity] turns on the fact that 
the logical primitives themselves, and in particular the notions of 
object and existence, have a multitude of different uses rather than 
one absolute ‘meaning’. 

And second, 

Once we make clear how we are using ‘object’ (or ‘exist’), the 
question ‘How many objects exist?’ has an answer that is not at all a 
matter of ‘convention’. 

The first point is pretty obvious whenever I calculate with shapes. 
What I see before me depends on the rules I try. Evans’s shape 

isn’t anything in particular until I apply the rule (identity) 

�� 

to pick out triangles. And if I use the rule 

�� 

it’s something different. Then the second point — at least my version of it — 
is also clear. It’s not up to me if there are triangles in the shape, but the result 
of calculating with the rule 

�� 

to see how triangles are embedded. The only problem is that the rule can be 
used in different ways to get different results. Of course, I can always insist 
that the rule is applied everywhere there’s a triangle. And I even have an 
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algorithm for this — in fact, my algorithm works for any rule. So maybe 
there’s a definite answer after all. 

But I have another way to look at counting that gives inconsistent 
results that aren’t so easy to bypass. Suppose I start with the rule 

that erases equilateral triangles, and then apply the rule to the shape 

In the series of shapes 

� 

there are clearly two triangles. That’s precisely how many I erase to make the 
shape 

disappear. What better test for counting could I ever have? And in this series 

� � 

there are three triangles. With only a little fiddling around — rotate the shapes 
in the second series — it’s easy to see that both of the series are implicated in 
the series of shapes 

to confirm what I just said that it’s a striking way to calculate: the first series in 
going from the fourth shape 
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to the sixth shape 

and the second series in going from the sixth shape to the final shape 

This is at least the third time — I promise it’s the last — that I’ve 
shown a variation of the same thing. I must be thinking about my students. I 
show them how to calculate with shapes again and again. They nod and insist 
they’ve got it. Only when it comes to doing it, they do exactly what they’re 
used to. They try constituents, and rely on all of the other bad habits — counting 
things up, saying they’re complex before calculating, etc. — that I’d been 
trying to break. Jacques Barzun in his nifty book on James calls this the ‘rubber-
band effect’. I use a few examples — like the ones above — to stretch the 
rubber-band when I teach. I do this as hard and as often as I can. Once in a 
while, I’m lucky. The rubber-band snaps. But let’s get back to Putnam’s 
second point. 

I want to say that the parts a shape has depend on what happens to the 
shape as I calculate. So long as I continue to try rules, parts may change. But 
I’d like to be consistent about this whenever I can. If I take the series of shapes 

seriously — and I do — then the parts of the shapes are the result of using the 
rule 

�� 

in a certain way. Now look at the atoms in Table 2. They take care of the 
above inconsistencies, so that the series is a continuous process. And I can 
always do this somehow after I’m through calculating — with topologies, 
Boolean algebras, lattices of different kinds, or comparable descriptive devices. 
But more than the variability that’s introduced in this way, there are alternative 
ways of going from the initial shape to the final shape that imply different 

43




G. STINY 

parts for the shapes in the series. What these parts are isn’t a matter of 
convention, at least in the way that Putnam has in mind. I can’t say what the 
parts are until I calculate. There’s real work to do to find out what’s what. I 
have to interact with shapes in the general sort of way I interact with other 
things like letters or numerals when I read or do arithmetic. No doubt, I can 
contrive some method to reconcile any differences that arise from calculating 
in this way or that retrospectively, if it ever becomes useful. Only this may not 
be the end of it. Whether or not I go on to see other parts as I continue to try 
rules, there’s just no reason to think that differences aren’t real. 

One way to check on experience is to require that parts are numerically 
distinct: to ask the question how many and get the same answer with the same 
parts every time. An accountant is trained for this, and a school teacher expects 
it taking roll. My local Selectman in Brookline is proud of it — ‘I’m logical, 
I’m an accountant’. I know just what she means. I count at the market to make 
certain I’ve got all of the items on my grocery list. Counting is an everyday 
practice that’s also good for business and science. But it’s only one kind of 
activity among myriad others. Must everything that counts work this way? 
What makes counting so special? Wittgenstein muses about shapes when 
they’re added together, so that some of their lines fuse. And James worries if 
counting is right for sensible experience. 

The relation of numbers to experience is just like that of 
‘kinds’ in logic. So long as experience will keep its kind we can 
handle it by logic. So long as it will keep its number we can deal 
with it by arithmetic. Sensibly, however, things are constantly 
changing their numbers, just as they are changing their kinds. They 
are forever breaking apart and fusing. 

Simply counting parts isn’t the only way to test experience. I can think of 
other things to do. One activity is the key to visual calculating. Take your 
finger and trace the parts you see. Trust your eyes, no matter what parts there 
are or how often they alter. Who cares whether numbers add up? Rely on the 
embedding relation. What you see is what you get. 

Minsky and Putnam cover some fascinating territory in which things 
can change. But they shy away from the vast interior. There’s novelty there, 
and the chance to see things in new ways again and again, because they’re 
vague and ambiguous like shapes. Artists, poets, madmen, and perhaps a few 
pragmatists have ventured into this foreign region with promiscuous results. 
But no one has seen it all, or ever will. There’s always more to see. What’s 
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especially nice is to find that visual calculating may be a practical way to map 
some of the uncertain terrain. 

When it comes to handling novelty, I take James as broadly as I possibly 
can to include seeing new things — visiting Los Angeles for the first time — 
and equivalently seeing things in new ways — going back (looking again) to 
find out how the city has changed. In both cases, the same question invokes 
novel experience. What’s that? And of course, this leads to visual calculating, 
while the above question — how many? — stays with calculating in the normal 
way. James provides a neat example in Pragmatism: A New Name for Some 
Old Ways of Thinking: 

You can treat [this] figure 

as a star, as two big triangles crossing each other, as a hexagon with 
legs set up on its angles, as six equal triangles hanging together by 
their tips, etc. All these treatments are true treatments — the sensible 
that upon the paper resists no one of them. You can say of a line that 
it runs east, or you can say that it runs west, and the line per se 
accepts both descriptions without rebelling at the inconsistency. 

But why not try to define the options once and for all? What would Evans say 
about it? I count 24 constituents — six long lines and their thirds — if I’m 
going to look for triangles. Halves don’t work anymore. They were ad hoc 
from the start. Will the same constituents do the job if I jiggle the two big 
triangles a little to get another six small ones? What happens if I jiggle harder 
and harder? Or suppose lines stay put. Then what about diamonds, trapezoids, 
and the pentagon in Wittgenstein’s addition? And what about A’s and X’s — 
big ones and little ones? But why should I try to limit my experience before I 
have it? Isn’t that what planning is for? There’s always something else to see 
every time I use another rule — as long as I calculate by seeing. 

James and other pragmatists got it right. At least I think so, whenever 
I calculate with shapes. And today ‘neopragmatists’ walk James’s line that 
runs east and west. Richard Rorty’s ironist is a perfect example as he and she 
try to redescribe things to make sense of them in a kind of literary criticism 
instead of philosophy. (This may say a lot more about a professional pecking 
order than about irony. In Hollywood, writers want to be actors, actors directors, 
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directors producers, and producers writers. What about philosophers and 
critics?) The goal isn’t coherence but to get around argument — reasoning — 
‘by constantly shifting vocabularies, thereby changing the subject’. Rorty’s 
ironist always has another verbal trick to see things from a different perspective. 
It’s not a question of truth but ‘making things new’. Isn’t this embedding all 
over again? Just how does Rorty put it? 

I have defined ‘dialectic’ as the attempt to play off vocabularies 
against one another, rather than merely to infer propositions from 
one another, and thus as the partial substitution of redescription for 
inference. I used Hegel’s word because I think of Hegel’s 
Phenomenology both as the beginning of the end of the Plato-Kant 
tradition and as a paradigm of the ironist’s ability to exploit the 
possibilities of massive redescription. Hegel’s so-called dialectical 
method is not an argumentative procedure or a way of unifying subject 
and object, but simply a literary skill — skill at producing surprising 
gestalt switches by making smooth, rapid transitions from one 
terminology to another. 

The ironist doesn’t calculate — at least according to Rorty — but 
does precisely what I do when I calculate with shapes. We both exploit myriad 
descriptions in order to do more. It’s just like politics. There are no ends — 
big goals like truth or permanent parts — only means. I apply rules in an 
algorithmic process, while the ironist uses literary skill to glide effortlessly 
from one terminology to another in a dialectic. So why the fuss? Nothing 
stops me from changing descriptions — from being ironic — when I calculate. 
I’ve been calculating with shapes for the past 30 years, and this is simply 
business as usual. There are many twists and turns. Lionel March has followed 
most of them with me, and is especially good at saying what’s involved. 

Contrary to conventional wisdom, rationality does not flourish in 
the presence of objective certainty, but actually thrives around 
subjective volition. To be rational requires the willingness to 
restructure the world on each contingent occasion, or in just two 
words, TO DESIGN. 

And again for me, each contingent occasion is every time I try a rule. Going 
on means always starting over. There’s a new analysis that’s independent of 
any given before. Parts fuse to erase prior distinctions, and the resulting shape 
divides according to the rule I use now. It’s all visual calculating — calculating 
by seeing. I said at the beginning that I think about this in terms of design. It 
appears I’ve been dealing with design all along. 
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So how are calculating and reasoning, and visual calculating and visual 
reasoning related? Also at the beginning, I made two suggestions in the form 
of diagrams. But right now, it’s probably a far better bet to rely on the diagram 
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that changes my first one by reversing the relationship between reasoning and 
visual calculating. I didn’t plan it this way, yet it appears that visual calculating 
holds more than reasoning allows. Maybe this isn’t worth the bother of figuring 
out. Perhaps the only relationships worth elaborating are these 
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that chart equivalencies between calculating by counting that asks how many 
— the ordinary kind of calculating we’re used to — and calculating by seeing 
that asks what’s that. How can I finally decide? Well, if calculating and 
reasoning — whether they’re visual or not — are anything at all like shapes, 
then it’s going to depend on how I calculate. The relationships — both what 
there is and how it’s connected — will change as I try rules. We’ll have to wait 
and see how it comes out. What a pleasant way to spend a summer afternoon 
talking. 

Background 

The ideas in this paper have secure technical roots. A summary of the 
main details — including the relationship between calculating by counting 
and calculating by seeing — can be found in my recent paper ‘How to Calculate 
with Shapes’. It’s Chapter 2 in Formal Engineering Design Synthesis, edited 
by Erik Antonsson and Jon Cagan. Cambridge University Press will publish 
the book later this year (2001). If you have the patience I do, you may want to 
wait for my book Shape to be finished. MIT Press hopes to publish it soon. 
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All the quotations from James are located in Chapter XXII — 
‘Reasoning’ — in The Principles of Psychology, except for the following five. 
The quotation on numbers and experience is in Chapter XXVIII, and the one 
on genius is in Chapter XIX. James talks about concepts and perceptual 
experience near the end of Chapter XI in Some Problems of Philosophy. 
Kierkegaard’s saying is found in Chapter IX in Essays in Radical Empiricism. 
And the description of the star is in Lecture 7 in Pragmatism: A New Name for 
Some Old Ways of Thinking. 

R. Narasimhan describes Evans’s grammar and how it applies to his 
shape in the first chapter ‘Picture Languages’ in the book Picture Language 
Machines, edited by S. Kaneff. 

The quotation from Wittgenstein appears in section V-40 in Remarks 
on the Foundations of Mathematics. The gloss on situated learning is taken 
from William F. Hanks’s forward to Jean Lave and Etienne Wenger’s book 
Situated Learning: Legitimate Peripheral Participation. Hanks’s brief 
description of how portable skills develop ‘even when coparticipants fail to 
share a common code’ is also worthwhile. The material from Minsky is in two 
places. His thoughts on creativity and the Body-Support concept are in section 
13.2 in The Society of Mind, and the rest is in his chapter ‘A Framework for 
Representing Knowledge’ in Patrick Winston’s earlier book The Psychology 
of Computer Vision. The first quotation from Putnam is in Lecture 2 in The 
Many Faces of Realism, while the other two are found in Lecture 1. Langer 
deals with forms of symbolism in Philosophy in a New Key, Barzun describes 
the rubber-band effect in ‘The Masterpiece’ in A Stroll with William James, 
and Rorty limns the ironist’s literary skill in Chapter 4 of Contingency, Irony, 
and Solidarity. Lionel March and I enjoy talking about design whenever we 
can at the Moustache Cafe in West Los Angeles, over a long lunch and a good 
bottle of wine. 
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