
everything you wanted to know
about computers*

John Alex

*but were too afraid to ask

Overview

• Functions as representation
• Function optimization methods, issues

– Steepest Descent
– Simulated Annealing
– Genetic Algorithms

• Analysis of shape grammars
• Possibilities

Ode to Functions

• Math is based on them
• Computers are based on them
• Very general representation: a mapping
• Helpful as intermediate object too

– aid to formalization, rigor

•	 Limited
– only maps numbers to numbers
– is mapping it?

Functions

• y = f(x)
• x,y: vector of parameters (‘parametric’?)

• “Form function”
– Vertices = f(dimensions, key pts, etc)

• “Fitness function”
– Quality = f(vertices)

Define form –geometry-only – not completely dumb – geometric constraints too.

Fitness function: what we’re going to optimize. Often implies recognition of building features, qualities
Form function: included in fitness function; limits space of forms we can consider.

Parametric – architects –
Within an optimizer, a dimension that the optimizer can vary.
For a modeler, a dimension that the user can define symbolically– CATIA
Not coherent; not compatible with technical meaning.
parameters that don’t move in an optimization are still parameters
All models defined parametrically, and all modeling programs let you modify those parameters (visually implicitly or explicitly).

Orthagonal - not in the dictionaries
fairly common misspelling on the net
why “misspelling”: no different meaning

Functions

• y = f(x)
• x,y are each a vector of parameters

• Each parameter can be either
– discrete (combinatorial): 0, 1, 2, 3, 4
– continuous: 0-4

Functions

• y = f(x)
• such that c(x) = 0

• Constraints: valid parameter combinations

Constrain the points we can choose; or, constrain the directions we can choose.
c(x) = 0 is true for many, possibly all, x

Examples: material properties, right angled relations between lines, polygons, shape grammars

Trouble with Functions in Design

• Pre-Optimization questions:
– how to define a useful form function?

• Vertices = f(dimensions, key pts, etc)

– how to define a useful fitness function?
• fitness = f(geometry only)?

– generality vs. specificity
– myth: computer functions can be random
– myth: designers’ functions are random

Useful form function: probably models one of the final artifacts (the CD’s) pretty well; but those CD’s are a translation/distillation of the various frameworks the architect actually used to shape the building. Those frameworks are not modeled here.

Useful fitness function: yes, as critics without the architect present we can only evaluate some finished artifact; but we also bring to it our life experiences, understanding of architectural history, etc, which isn’t modeled here.

Random digression:
Computers are not random. Random functions have seeds; usually you seed it with the current time of day – appears random. Given that random set of images, could have reproduced them if I stored the seed and used it again. In general, people don’t understand, infer more complexity than is there – usually it’s doing something dumber than you think.
Designers are not random – there’s structure. When you open the floodgates, not opening them all the way. “random models”
In the case of computers, we know they’re not random. We made them. In the case of people, we think there’s structure all the way down, but don’t know what it is. Even if we could model it, can’t get the data to populate it.

Trouble with Functions in Design

• Optimization question:
– how to find the most fit form?

• Pre, mid, post-optimization question:
– how to handle emergence?

• changing form, fitness functions during design
• changing question in middle of trying to answer it

Architectural Function

Optimization

• Vertices = f(model parameters)
• Quality = f(vertices)
• Quality = f(model parameters)

•	 Optimization = vary model parameters to
maximize goodness

Function Optimization

max q(p0, p1, …, pn)
Keeping c0(p0, p1, …, pn) = 0

and c1(p0, p1, …, pn) = 0 and…

max q (p)

keeping c(p) = 0

given some initial state p0

Max = - min. Downhill: making function better. Steepest Descent; hill climbing breaks the metaphor. Really hill-falling.

Function Optimization

max q (p)
keeping c(p) = 0

p0: initial state

• Goodness must be a single number
– “multi-objective optimization”

• The problem: given start, where to go next?
– in which direction?
– how far?

weighting multiple objectives – fundamental problem – have to weight them, which basically means turning them into one objective

Generate a direction and evaluate it.We’d prefer to generate something we know will be better.Can take the derivative, see where it’s going.

Functions – Moving Around

• Move in a direction for a certain distance
• Start: (0,0)
•	 Move to (2,2): moving in (1,1) direction for a

distance of 2.

• ‘Direction’ = a change in each parameter
• ‘Distance’ = multiplier of a direction

Functions – Continuity

• Changing continuous parameters: nicer
–	 correlation: direction (1,1) roughly equals combination of effects

from directions (1,0) and (0,1)
–	 correlation: moving further along (.5, 4.2) tends to produce more

of what that direction does
–	 derivatives: can determine effect of parameter change without

trying all possible changes

•	 Combinatorial: no correlation between directions, between
distance and outcome
– (usually)
– shape grammars are combinatorial

2-D means 2 parameters

1st correlation: independence of parameters
2nd correlation: roughly linear in its parameters. Big jump between linear and nonlinear; for multilinear or nonlinear functions, bound distance – inside that, looks like a line. Fundamental idea of calculus: all curves are lines, if you look close enough. Assumes point tells of some neighborhood.

Shape grammars – no principled way to search, even if you had a fitness function.

Optimization Techniques

• Steepest Descent
• Simulated Annealing
• Genetic Algorithms

Hill-Climbing/Steepest Descent

• Go downhill
– best downhill direction: downhill for each parameter
– distance: select best along direction
– can’t go downhill? Stop.

• Local or global extrema?
– fundamental problem

Direction is amount to change all parameters
IF the function is nice (neighborhood around point is whole function) or if we start near the min and can bound our jumps.
Only claim we’ll be able to make.
Most principled.

Simulated Annealing

• Jump around…
• Jump around…
• Jump up, jump up….
• …and get down.

Will this find a better solution than steepest descent? Maybe.
 Will it find worse? Maybe – if you were close to optimum but jumped out.
 How fast to bring down j and t? Without principles, have to tweak for each particular case, but even that assumes you know where it should go.

Simulated Annealing

• Jump around/up...
– provisionally jump around a distance j (‘taking’ the

new position if it’s better - or not much worse)

• …and get down
– steadily lower jump distance j and uphill tolerance t

• lower the energy of the system
• steel cooling, water flooding

– t = 0, small j: must get better at each step = hill-falling

Jump over nearby hills to find deeper valleys.
Will this find a better solution than steepest descent? Maybe.
 Will it find worse? Maybe – if you were close to optimum but jumped out.
 How fast to bring down j and t? Without principles, have to tweak for each particular case, but even that assumes you know where it should go.

Genetic Algorithms

• GA concepts can be thought of functionally:
– Phenotype = f(genotype)

• form = f(dimensions)

– Fitness = f(phenotype)
• fitness = f(form)

– Genotype = dimensions
– Phenotype = form

Genetic Algorithms
• Evolution as functional optimization

– arbitrary directions
• generated by:

– interleaving parameters of parents (crossover)
– ‘random’ change of parameter (mutation)

• ignore direction, distance correlations
• assume crossover groups are independent of each other
• generates invalid parameter sets
• locking down substrings: when? how many? for how long?

– multiple kids: parallel optimization
• i.e., multiple directions at once

– unknown improvement in kids
• have to evaluate fitness of each kid after generating it

– possibly no improvement in kids (convergence?)

It seems totally different because it doesn’t take advantage of local information the way the other two do; but it fits in the optimization framework. No assumptions about the function. Advantage: you don’t need local information, anything will work. Disadvantage: No way to tell if it’s doing good/did good.

Problem with crossover: is new configuration valid?

All the algorithms could be done in parallel – start them off at various start points (‘parents’). It’s just that GA doesn’t make any sense otherwise.

Limited to parameters you started with – for continuous functions, makes little sense – really want interpolation.
Is it going to find a better solution than exhaustive search? More limited…
No guarantee of finding local min.

Substring locking down happens by default in other two – if those params are at their min, they’ll stay there.

Shape Grammars - Generation

Generate all shapes s(rules, s0, n)

s0: initial shape

rules: shape rules

n: number of iterations

• Fitness function inside human operator
•	 Human optimizer changes parameters to

increase fitness
• Implicit fitness/recognition function

How is human operator changing parameters?
Is the representation good enough to support all the ones you want?

Shape Grammars - Generation

• (r0,r1,r2,…) = recognizer(shape, set of all rules)
– recognizer compares left sides, allowing for translation,

scale, and rotation
– recognizer as local fitness function: only certain rules

are fit for this situation

• (r0,r1,r2,…) are a set of (equally good!) directions

•	 Go in all directions, distance 1 (apply all valid
rules once), producing shape0, shape1, …, shapen

• Recurse on all the kid shapes

Problems with recognition: later.

Shape Grammars - Optimization

max q (s0,r0, r1, r2, .., rn)
keeping c(s0, r0,r1,r2,..,rn) = 0

s0: initial shape
n: number of rules to apply

• Combinatorial representation
– regardless of fitness function, no good way to

search the space

No efficient way to find the best quality – exhaustive search.
All algorithms merely searching in a different order: GA no more principled than any other.
Probably want to sample the space as evenly as possible, create a manifold, find lowest.
Steepest Descent: progressively find best rule – no guarantee of finding best
Simulated annealing: do n rules, see if better. If not much worse, keep it. -> steepest descent.
GA Crossover: is rule 5 here interchangeable with rule 5 there?
 is it even valid? (Loomis avoided by having one rule that could always work)

The Tough Questions

•	 Form function: What bogus forms are allowed? What
useful forms are not allowed? What framework is
embodied in the function?

•	 Fitness function: What does ‘fitness’ mean? (Does it
encode architectural knowledge? How?)

• Representation of emergence?
•	 Optimization: Is it finding the global minimum (by starting

near solution or being a bowl-shaped function)? If not,
what is it finding?

• Recognition = binning based on sliding qualities
– ‘x is awfully chair-like’ -> ‘x is a chair’
– ‘x is somewhat chair-like’ -> ‘x is a chair’??
– When is x not a chair? Who’s deciding, and how?

Computers in Design: Future

• support quick, narrow optimizations
– support form changes

• quick specification of formwork as it changes

– brainstorming – show all combinations
•	 more fine-grained study of frameworks and

how they change
– given explicit representation, computer can help

Quick optimizations: minimize area, get me the minimum beam size
Brainstorming: combinatorics, the packing problem.

As we understand more, can represent them and have computers help us with them.

Difficult Things Computers Do
• Simulation

– light
– structural strength
– sound
– heat

• Visualization
– realistic: simulation of light
– non-realistic: arbitrary artistic techniques to convey information

• false color, overlays, collage, false perspective
• show temperature, airflow, etc

• Calculation
– area, cost, number of parts

Computers have no problem with this very difficult stuff – use it.

