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ISSUES TO ADDRESSISSUES TO ADDRESS...

•  What are the classes and types of  composites?

•  Why are composites used instead of  metals,
ceramics, or polymers?

•  How do we estimate composite stiffness & strength?

•  What are some typical applications?



• Composites: woven
--Multiphase material w/significant fibers

prproporoportions tions ofof  eaea. phase. 
• Matrix: 

--The continuous phase

--Pur Purpose is pose is to
to:

transfer stress to other phases cross
protect phases from environment section

viewviewPM
--Classif--Classificaication: tion: MMCMMC, CMC, PMC

metal ceramic polymer


• DisperDispersed sed phasephase::
--Purpose: enhance matrix properties. 

MMC: increase Vy, TS, creep resist. 
CMC: increase Kc 
PMC: increase E, Vy, TS, creep resist. 

--Classification: Particle, fiber, structural 



COMPOSITE SURVEY: Particle-I

Particle-reinforced Fiber-reinforced Structural 

• Exampples: 
-Spheroidite matrix: particles:	 Adapted from Fig. 

ferrite (steel 

60Pm 

D) cementite 10.10, Callister 6e. 

(Fe3C) (Fig. 10.10 is 
(ductile) copyright United 

(b rittl e) States Steel (b ittl ) States Steel
Corporation, 1971.) 

-WC/Co matrix: Adapted from Fig. 
particles:	 16.4,, Callister 6e.

cobalt WC	 (Fig. 16.4 is cemented 
(ductile) (brittle,	 courtesy Carboloy 

Systems, carbide 
Vm: hard)	 Department, 

General Electric 
10-15vol%! 10-15vol%! 600 600Pm	 Cm Company.) )

Adapted from Fig. 

-Automobile matrix: 16.5, Callister 6e.
particles: (Fig. 16.5 is 

tires rubber C	 courtesyC y Goodtires 
(compliant) 

yyear 

(stiffer)	 Tire and Rubber 
Company.) 

0.75Pm 
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COMPOSITE SURVEY: Particle-II


Particle-reinforced Fiber-reinforced Structural 

• Elastic modulus EElastic modulus, c of composites: Ec, of composites:
-- two approaches. 

upper limit: “rule of mixtures”


E V E  � V E
E(GPa)

c m m p p

E(GPa)


Data: 350

lower limit: Adapted from Fig. 16.3, 

Cu matrix 300 Callister 6e. (Fig. 16.3 
1 V Vw/tungsten250 m p is from R.H. Krock, 

ti	 l E E 
� 

E
ASTM Proc, Vol. 63,

particles 

0 20  

200 Ec Em Ep 
, , 

1963.) 

150 

(C ) 
40 60 80 

(
10
W) 

0 vol% tungsten 
(Cu)	 (W) 

• 	Application to other properties: 
-- Electrical conductivity,y, Ve: Repplace E by y Ve. 
-- Thermal conductivity, k:  Replace E by k. 




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COMPOSITE SURVEY: 
Fiber-reinforced 

Fiber-I 
Particle-reinforced Structural 

•	 Aligned Continuous fibers 
•	 Examples: 

--Metal: J'(Ni3Al)-D(Mo) --Glass w/SiC fibers 
by eutectic solidification.	 formed by glass slurry 

E 76GP E 400GP matrix: D�(Mo) (ductile)	 Eglass = 76GPa; ESiC = 400GPa. 

2Pm 

fibers:J’ (Ni3Al) (brittle) 

From W. Funk and E. Blank, “Creep 
deformation of Ni3Al-Mo in-situdeformation of Ni3Al Mo in situ 
composites", Metall. Trans. A Vol. 19(4), 
pp. 987-998, 1988.  Used with 
permission. 

From F.L. Matthews and R.L. 
Rawlings Rawlings, Composite MaComposite terials;Materials; 
Engineering and Science, Reprint 
ed., CRC Press, Boca Raton, FL, 
2000. (a) Fig. 4.22, p. 145 (photo 
by J. Davies); (b) Fig. 11.20,  p. 
349 (micrograph by H.S. Kim, P.S. 
Rodgers, and R.D. Rawlings). 
Used with permission of  CRC 
Press, Boca Raton, FL. 
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COMPOSITE SURVEY:  Fiber-II
Particle-reinforced Fiber-reinforced Structural

•  Discontinuous, random 2D fibers
 Example: Carbon-Carbon
--process:  fiber/pitch, then

burn out at up to 2500C.
--uses:  disk brakes, gas 

turbine exhaust flaps, nose
cones.

• 

•  Other variations: Other variations:
--Discontinuous, random 3D
--Discontinuous, 1D

• 

Adapted from F.L. Matthews and R.L. 
Rawlings, Composite Materials;  Engineering 
and Science, Reprint ed., CRC Press, Boca 
Raton, FL, 2000. (a) Fig. 4.24(a), p. 151; (b)  
Fig. 4.24(b) p. 151. 

 

500 µm

C fibers: very stiff
very strong

C matrix: less stiff
less strong

View onto plane

(a)

(b)

Fibers lie in plane

Figure by MIT OpenCourseWare. 



COMPOSITE SURVEY:  Fiber-III
Particle-reinforced Fiber-reinforced

•  Critical fiber length for effective stiffening & strengthening:
Structural


fiber length  15 f d

fiber strength in tension fiber diameter

shear strength of
  c

g
fiber-matrix interface

• Ex: For fiberglass, fiber length > 15mm needed
• Why?  Longer fibers carry stress more efficiently!Why?  Longer fibers carry stress more efficiently!

fiber length  15 f d
 c

Shorter, thicker fiber:
fiber length  15 f d
  c

Longer, thinner fiber:

(x) (x)(x)

Adapted from Fig. 
16.7, Callister 6e.

Poorer fiber efficiency Better fiber efficiency



COMPOSITE SURVEY:  Fiber-IV

•  Estimate of  Ec and TS:

Particle-reinforced Fiber-reinforced Structural

  Estimate of  Ec and TS:


--valid when fiber length  15 f d
 c

-- Elastic modulus in fiber direction:-- Elastic modulus in fiber direction:

efficiency factor:
  Ec  EmVm KEf Vf

y
--aligned 1D:  K = 1    (anisotropic) Values from Table 16.3, Callister 6e.  

--random 2D: K = 3/8 (2D isotropy)
(Source for Table 16.3 is H. Krenchel, 
Fibre Reinforcement, Copenhagen: 

--random 3D: K = 1/5 (3D isotropy) Akademisk Forlag, 1964.)

--TS in fiber direction:  TS in fiber direction:  

  (TS)c  (TS)m Vm  (TS)f V (aligned 1D)f



COMPOSITE SURVEY:  Structural
Particle-reinforced Fiber-reinforced Structural

•  Stacked and bonded fiber-reinforced sheets  Stacked and bonded fiber reinforced sheets
-- stacking sequence:  e.g., 0/90
-- benefit:  balanced, in-plane stiffness

Adapted from Adapted from 
Fig. 16.16, 
Callister 6e.

•  Sandwich panels
-- low density  honeycomb core-- low density, honeycomb core
-- benefit:  small weight, large bending stiffness

face sheet
adhesive layer

Ad t d f  Fi  16 17

adhesive layer
honeycomb

Adapted from Fig. 16.17,
Callister 6e.  (Fig. 16.17 is
from Engineered Materials
Handbook, Vol. 1, Composites, ASM International, Materials Park, OH, 1987.



•  CMCs: Increased toughness •  PMCs: Increased E/

E(GP )

ceramics
310

Force
particle-reinf

E(GPa) PMCs210
10 metal/ 

fiber-reinf
1 metal alloys1 metal alloys

.1 G=3E/8 polymers
K=E.01

1 3 1 3 10 30

un-reinf

Bend displacement

•  MMCs:

-410
6061 Al

610
 -1ss (s )

Bend displacement .1 .3 1 3 10 30
3Density,  [Mg/m ]

•  MMCs:
Increased
creep

i t

-610

-810

Adapted from T.G. Nieh, "Creep rupture 
of  a silicon-carbide reinforced 

6061 Al aluminum composite", Metall. Trans. A
Vol. 15(1), pp. 139-146, 1984.  Used with 

resistance w/SiC permission

 20
-1010 30 50 100 200

w/SiC permission.

whiskers (MPa)



•  Composites are classified according to:
-- the matrix material (CMC, MMC, PMC)
-- th  i f t the reinforcement geomet  ( ti l  fib  l )try (particles, fibers, layers).

•  Composites enhance matrix properties:
-- MMC: enhance y, TS, creep performance
-- CMC:  enhance Kc

-- PMC:  enhance E, y, TS, creep performance
•  Particulate-reinforced:

-- Elastic modulus can be estimated.
-- Properties are isotropic.

•  Fiber-reinforced:
-- Elastic modulus and TS can be estimated along fiber dir.
-- Properties can be isotropic or anisotropic.

•  Structural:  Structural:
-- Based on build-up of  sandwiches in layered form.




