16.901: Sample Homework # 2
Solution

In this homework, we will consider numerical solutions to the one-dimensional diffusion equation,
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where v is a positive constant. Specifically, consider a forward Euler time integration and a 2nd-order
centered-difference approximation in space,
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1. Perform a semi-discrete Fourier analysis of this discretization and determine the eigenvalues A, (8 )-

Solution: Substituting U? = U,, exp(ikmjAz) into the semi-discrete equation (i.e. not discretizing
in time) gives:
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Note that these eigenvalues are purely real and negative, as one would expect since this problem is
pure diffusion.

2. What is the largest value of vAt/Az? for which the discretization is stable when integrated with
forward Euler?

Solution: Since 1 — cos B, > 0, then the largest magnitude eigenvalue will occur when this term
is largest. This occurs when 3,, = *x, for which 1 — cos 8, = 2. Thus, the maximum magnitude of
Am At is,
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For forward Euler, the negative real extent of the stability region is at [AA¢| = 2. Thus, the largest
magnitude (negative) eigenvalue must be inside this limit to remain stable:
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