16.901: Sample Homework # 1 Solution

1. Consider the convection-diffusion equation,

$$\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} = \nu \frac{\partial^2 T}{\partial x^2},$$

where ν is a constant. Assuming a wave of the form, $T(x,t) = \hat{T}_k(t) \exp(ikx)$, determine the solution for $\hat{T}_k(t)$ given the initial condition $\hat{T}_k(0) = 1$. Using this solution, show that the amplitude of $\hat{T}_k(t)$ decays as $t \to \infty$ only if $\nu > 0$.

Solution: Substituting $T(x,t) = \hat{T}_k(t) \exp(ikx)$ into the governing equation gives:

$$\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} = \nu \frac{\partial^2 T}{\partial x^2},$$

$$\frac{d\hat{T}_k}{dt} \exp(ikx) + iku\hat{T}_k \exp(ikx) = (ik)^2 \nu \hat{T}_k \exp(ikx)$$

$$\frac{d\hat{T}_k}{dt} = (-\nu k^2 - iku) \hat{T}_k.$$

$$\Rightarrow \hat{T}_k(t) = \exp\left[(-\nu k^2 - iku) t\right].$$

Note, the solution has been chosen such that $\hat{T}_k(0) = 1$. Since the amplitude is unchanged by the imaginary portion of time dependence,

$$\begin{aligned} \left| \hat{T}_k(t) \right| &= \left| \exp \left[\left(-\nu k^2 + iku \right) t \right] \right|, \\ &= \left| \exp \left(-\nu k^2 t \right) \right| \left| \exp \left(-ikut \right) \right|, \\ &= \left| \exp \left(-\nu k^2 t \right) \right|. \end{aligned}$$

Clearly, this decreases as $t \to \infty$ since νk^2 is a positive number.

2. Consider the fourth-order equation:

$$\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} = \sigma \frac{\partial^4 T}{\partial x^4},$$

where σ is a constant. Assuming a wave of the form, $T(x,t) = \hat{T}_k(t) \exp(ikx)$, determine the solution for $\hat{T}_k(t)$ given the initial condition $\hat{T}_k(0) = 1$. Using this solution, for what values of σ will the amplitude of $\hat{T}_k(t)$ decay as $t \to \infty$?

Solution: Following the same procedure as in the previous problem, substituting $T(x,t) = \hat{T}_k(t) \exp(ikx)$ into the governing equation gives:

$$\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} = \sigma \frac{\partial^4 T}{\partial x^4},$$

$$\frac{d\hat{T}_k}{dt} \exp(ikx) + iku\hat{T}_k \exp(ikx) = (ik)^4 \sigma \hat{T}_k \exp(ikx)$$

$$\frac{d\hat{T}_k}{dt} = (\sigma k^4 - iku) \hat{T}_k.$$

$$\Rightarrow \hat{T}_k(t) = \exp\left[(\sigma k^4 - iku) t\right].$$

Note, the solution has been chosen such that $\hat{T}_k(0) = 1$. Since the amplitude is unchanged by the imaginary portion of time dependence,

$$\begin{aligned} \left| \hat{T}_k(t) \right| &= \left| \exp \left[\left(\sigma k^4 - iku \right) t \right] \right|, \\ &= \left| \exp \left(\sigma k^4 t \right) \right| \left| \exp \left(-ikut \right) \right|, \\ &= \left| \exp \left(\sigma k^4 t \right) \right|. \end{aligned}$$

Clearly, for this to decrease as $t \to \infty$, σ must be negative: $\sigma < 0$.