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1 Background

In Project #2, the temperature distribution in a cooled turbine blade was estimated using a
finite element method. In this project, the concern is to quantify the variability in maximum
temperatures and maximum temperature gradients due to variability in the environment
and properties of the turbine blade. These quantities are of interest because the usable life
of a blade decreases as either the temperature or the temperature gradients increase.

1.1 Design Conditions

The nominal, i.e. design-intent, conditions are the same as analyzed in Project #2. In

particular,
k=30W/(mK).

For the outer surface of the blade, the temperature will be assumed to be,
Tgas = 1500 K.

The heat transfer coefficient will be larger at the leading edge, and this is modeled with the
following form,
z/c\2
Pgas(z) = hrE + (hie — h/I"E)e_4(°'05) W/(m*K), (1)
with the design-intent values of hyp and hrg being 16,000 and 4,000 W/(m2K). The chord
of the blade is ¢ = 0.04m. For the internal cooling passages and trailing edge slot, we will

assume that,

Troor = 600 K, Peoor = 1500 W/ (m?K).

Using the provided Matlab script, DesignIntent.m, the the maximum temperature and
maximum temperature gradient (magnitude) in the blade at design-intent conditions are (to
three significant digits),

Tks =1430K,  |VT|%s. = 70,000 K/m.

max

1.2 Input Variability

We will assume the following variability in the inputs:

e The thermal conductivity of the blade will be assumed to have a triangular distribution
in which kpin = 285 W/ (M K), kpmpp = 30 W/(m K), and kper = 31.5W/(m K).



1.3

The external gas temperature will be assumed to have a triangular distribution in
which Tyqs,,;, = 1400 K, Tyos,,,.,, = 1500 K, and T, = 1600 K.

The leading-edge, external gas heat transfer coefficient will be assumed to have a trian-
gular distribution in which Apguy, = 15,500 W/(m*K), hppuy,, = 16,000 W/(m?K),
and Arpmee = 18,000 W/(m?K). Note that this distribution is not centered about
the most-probable value because it is assumed that the presence of additional surface
roughness at the leading-edge will tend to increase the heat transfer in this region
above design intent.

The trailing-edge, external gas heat transfer coefficient will be assumed to have a tri-
angular distribution in which Argy, = 3,500 W/(m*K), hrgm, = 4,000 W/(m?K),
and hTEmaz = 4, 500 W/ (mQK)

The cooling passage temperature will be assumed to have a triangular distribution
in which Teooimin = 350 K, Teooimpy = 600 K, and Teoorme, = 650 K. Note: it is
assumed that the cooling temperature in the three passages will be a single random
value (not three different random values). This is because the passages are all supplied
by a single common plenum and all will see the same change in temperature. This
essentially assumes that the variability of the temperature from passage-to-passage is
much smaller than that from blade-to-blade.

The cooling passage heat transfer coefficient will be assumed to have a triangular
distribution in which Aeootmin = 1,400 W/(m2K), heootmpp = 1,500 W/(m?K), and
heootmaz = 1,600 W/(m?K)). As with the cooling passage temperatures, we will assume
only a single random value for all three passages.

Matlab Scripts

The following Matlab scripts and input files are available on the webpage for you to use
in completing this project.

calcblade.m: Function that performs the finite element analysis given the input pa-
rameter values and the mesh data. It returns the temperature at the nodes and the
temperature gradient magnitude in the elements.

loadblade.m: Function that loads the mesh. Note: Since the shape of the blade is
not changing during the Monte Carlo simulation, this function only should be called
once prior to the entering the Monte Carlo loop. Inside the loop, only calcblade.m
needs to be called.

Thgas.m: Function that calculates the external gas temperature and heat transfer
coefficient dependent on the location on the surface.

DesignIntent.m: Script that performs the heat transfer analysis at the design intent
conditions. This script calls the above functions.

hpblade_coarse.mat: The coarse mesh data file which is to be used for this project.



2 Tasks

2.1 Estimation of Probability of Failure

A failure will occur when the maximum temperature or temperature gradients become too
large. For simplicity, a limiting value of the temperature and temperature gradient will be
assumed. Specifically, we will assume that,

Thimit = 1500 K, VT |iimiz = 80,000 K/m.

As a simple method to combine damage due to high temperature and damage due to high
temperature gradients, a blade will be assumed to fail when D > 1 where,
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Implement a Monte Carlo method to determine the probability of failure to within 4+0.01
at 99% confidence. Specifically:

1. Develop well-commented Matlab scripts to implement the Monte Carlo analysis for
this problem. Upload your Matlab scripts on the webpage. Note: no additional docu-
mentation is required beyond well-documented, clearly-written Matlab scripts.

2. What is the estimated probability of failure? What sample size was required to achieve
the required accuracy?

3. Include histograms and CDF plots of the distribution of T4z, |VT |1maz, and D. Note:
use the Matlab command cdfplot for plotting CDF’s.

2.2 Screening for Important Factors

In this section, you are to determine which of the input variabilities have the strongest effect
on the probability of failure. In principle, it would be possible to run additional Monte
Carlo simulations in which the input variability were individually decreased (or increased)
and the change in the probability of failure could be calculated. However, this could involve
significant time especially when the number of inputs is large. Another possibility is to
analyze the previous Monte Carlo results (from Section 2.1) to estimate the input variabilities
that are strong drivers of the probability of failure and/or the damage. In this task, you
will determine which inputs have the strongest effects on the damage, and assume that these
inputs also have a strong effect on the failure probability.

One standard method for quantifying the strength of coupling between variables in a
sample is through the Spearman rank correlation coefficient. The Spearman rank correlation
coefficient is constructed by sorting the two variables and then constructing the correlation
coefficient based on the difference in ranks between them. In this project, the correlation
will be quantified between the damage, D, and each of the 6 input parameters (k, Tyos, hrr,
hrE, Teoor and heoor). For example, to find the rank correlation coefficient between D and £,



D is sorted (from low to high) and k is sorted similarly. Then, the rank distance for the pair
(D;, k;) is defined as,
d; = rank(D;) — rank(k;),

where the function rank(z;) returns the integer index in the sorted set of z;’s. Using this
definition, the correlation coefficient, p, between the ranks of the two variables is,

YN, d?

=1-6-2=t% |
P N(N2—1)

To calculate this correlation coefficient, you can use Matlab’s function corr which is available
in Matlab’s Statistical Toolbox. When using this function, make sure to set the type to
Spearman. Note that p is guaranteed to range between —1 and 1. Strong correlations are
indicated when p approaches either +1. No correlation is indicated for |p| — 0. The sign of
p indicates whether the two variables increase together, or in opposition.

For this task, determine the input variables which are most strongly rank-correlated to the
damage using Spearman’s rank correlation coefficient applied to the sample from Section 2.1.
Specifically, give the value of p for each input.

2.3 Impact of Important Factors on Probability of Failure

The purpose of this task is to quantify the impact that decreasing the variability of the
inputs would have on the probability of failure. This type of information would then be
used to decide if resources should be spent on controlling these sources of variability. To
quantify this impact, the following procedure is suggested. For an input at a time, the
input variability will be decreased by 50% by decreasing the separation of the minimum
value and the maximum value to the most probable value by 50%. For example, for hrg,
the new triangular distribution would be defined by, hrgmi, = 15, 750 W/(m2K), hrgmy,y =
16,000 W/(m?K), and hpgm., = 17,000 W/(m?K). Starting from the input variable that is
most strongly correlated with the damage (as determined in Section 2.2), perform a Monte
Carlo simulation in which only that input variability is decreased (while the other 5 input
distributions remain the same) and calculate the probability of failure to within +0.01 at
99% confidence. When the probability of failure from reducing an input’s variability cannot
be discerned from statistical uncertainty, then the impact of the remaining more weakly
correlated inputs does not need to be quantified. As a simple test of statistically significant
differences, we will require that the confidence intervals for the probability of failure do not
overlap.
In this task, specifically perform the following tasks:

1. In order of strongest correlation, determine the probability of failure for a 50% re-
duction in an input’s variability as described above until the first input that does not
have a statistically significant impact. Including up to the first non-significant result,
determine the probability of failure within 40.01 at 99% confidence and the sample
size required to achieve this accuracy for each input.

2. Include histogram and CDF plots for the reduced input variability simulations that
were performed.



