Computational Methods in Aerospace Engineering

David L. Darmofal
Aeronautics & Astronautics
M.LT.
Cambridge, MA 02139

Copyright 2005, David L. Darmofal

May 11, 2005

Contents

ODE Introduction

1.1 The Forward Euler Method
1.2 The Midpoint Method
Accuracy

2.1 Convergence and Global Accuracy
2.2 Local Accuracy
Convergence

3.1 Multi-step Methods
3.2 Dahlquist Equivalence Theorem
3.3 Consistency
3.4 Stability oL
Systems of ODE’s

4.1 Nonlinear Systems
4.2 Linear Constant Coefficient Systems
4.3 Eigenvalue Stability for a Linear ODE
Stiffness

5.1 Stiffness Lo
5.2 Implicit Methods for Linear Systems of ODE’s
5.3 Implicit Methods for Nonlinear Problems . . .
5.4 Backwards Differentiation Methods

Runge-Kutta Methods

6.1 Two-stage Runge-Kutta Methods
6.2 Four-stage Runge-Kutta Method
6.3 Stability Regions
Finite Volume Method
7.1 Conservation Laws
7.2 Convection.
7.3 Finite Volume Method for Convection
7.3.1 One-Dimensional Convection

17
17
19

23
23
24
25
26

29
29
30
32

37
37
42
43
45

51
51
o1
52

4 CONTENTS
7.3.2 Two-Dimensional Convection 63

7.4 Extensions of the Finite Volume Method 67
7.4.1 Nonlinear Systemso 67

7.4.2 Higher-order Accuracyo 68

8 Finite Volume Method 69
8.1 Finite Difference Approximations 69
8.2 Boundary Conditionso Lo 72
8.3 Truncation Error Analysis 75
8.3.1 Truncation Error for a Derivative Approximation 75

8.3.2 Truncation Error fora PDE 76

9 Matrix Stability 79
10 Fourier Analysis 87
10.1 Fourier Analysis of PDE’s 87
10.2 Semi-Discrete Fourier Analysis 0oL, 88

11 Method of Weighted Residuals 93
11.1 The Collocation Method 96
11.2 The Method of Weighted Residuals 97

12 Finite Element Method 101
12.1 Motivation e e e 101
12.2 1-D Finite Element Mesh and Notation 102
12.3 1-D Linear Elements and the Nodal Basis. 102
12.4 1-D Diffusion Equation and Weighted Residual 105
12.5 Gaussian Quadrature 109
12.5.1 Ny=1Quadrature Rule, 110

125.2 Ny =2 Quadrature Rule 110

12.6 Boundary Conditions Lo 115
12.6.1 Implementation of Dirichlet Boundary Conditions 116

12.6.2 Implementation of Neumann Boundary Conditions 116

12.6.3 Implementation of Robin Boundary Conditions 117

13 2-D FEM 125
13.1 Reference Element and Linear Elements 125
13.2 Differentiation using the Reference Element 127
13.3 Construction of the Stiffness Matrix 127
13.4 Integration in the Reference Element 128

14 Higher-order FEM 129
14.1 Nodal Basis for Higher Order Elements 129
14.2 Implementation of higher-order FEM 130
14.3 Hierarchical Basis for Quadratic Elements 134

CONTENTS 5

15 Monte Carlo Introduction 141
15.1 Monte Carlo Method for Uniform Distributions 143
15.2 Monte Carlo Method for Non-Uniform Distributions 145

15.2.1 Triangular Distributions 0. 146
15.2.2 Empirical Distributionso o000 146

16 Monte Carlo Error Estimates 151
16.1 Mean e e e e 151
16.2 Other Estimators and Standard Errors 153

16.2.1 Probability 153
16.2.2 Variance e e e 155
16.2.3 Standard Deviation 155
16.3 Bootstrappingo 155

A Multi-Step Summary 157
A.1 Adams-Bashforth Methods 157
A.2 Adams-Moulton Methods 158
A.3 Backward Differentiation Methods, 158

B Probability Review 163
B.1 Outcomes and Events oo 163
B.2 The Meaning of Probability 163
B.3 Random Variables. oo 164
B.4 Probability density functions (PDF) 164
B.5 Expected valueand mean L. 165
B.6 Variance and standard deviation 165
B.7 Cumulative distribution functions (CDF) 165
B.8 Percentiles e 165
B.9 Common distribution typeso Lo 166

B.9.1 Normal distribution 166

CONTENTS

Lecture 1

Numerical Integration of Ordinary
Differential Equations:
An Introduction

Ordinary differential equations (ODE’s) occur throughout science and engineering.

Example 1.1 A model for the velocity u of a spherical object falling freely through the
atmosphere can be derived by applying Newton’s Law. Specifically,

mpur = mypg — D(u) (1.1)

where my, is the mass of the particle, g is the gravity, and D is the aerodynamic drag acting
on the particle. For low speeds, this drag can be modeled as,

D = %pgﬂa%QC’D(Re) (1.2)
2

Re = % (1.3)
Hg
24

Cp = ° (14)

404
Re 14+ +/Re

where py and pg are the density and dynamic viscosity of the atmosphere, a is the sphere
radius, Re is the Reynolds number for the sphere, and Cp is the drag coefficient. To complete
the problem specification, an initial condition is required on the velocity. For example, at time
t =0, let u(0) = ug. By solving Equation 1.1 with this initial condition, the velocity at any
time u(t) can be found.

A general ODE is typically written in the form,
U = f(ua t)v (15)

where f(u,t) is the forcing function that results in the evolution of u in time. When f(u,t)
depends on « in a nonlinear manner, then the ODE is called a nonlinear ODE.

7

8 LECTURE 1. ODE INTRODUCTION

Example 1.2 For Example 1.1, the forcing function is,

1
t)y=9g— —D
flut)=g m (u)
From the definition of D(u), f(u,t) is nonlinear in u. Note also that in this example, f does
not depend on t directly rather f(u,t) = f(u).

Although the use of numerical integration is most important for nonlinear ODE’s (since
analytic solutions rarely exist), the study of numerical methods applied to linear ODE’s is
often quite helpful in understanding the behavior for nonlinear problems. The general form
For a single, linear ODE, is

ur = At)u + g(1), (1.6)

where A(t) is independent of u. When A(#) is a constant, the ODE is referred to as a linear
ODE with constant coefficients.

In many situations, the linear ODE is derived by linearizing a nonlinear ODE about a
constant state. Specifically, define the dependent state u(t) as a sum of ug and a perturbation,
u(t),

u(t) = ug + a(t). (1.7)

A linearized equation for the evolution of @ can be derived by substitution of this into
Equation 1.5:

Uy = f(u7t)a
/E['t = f(U0+ﬂt)

. = f(uo,0) f‘ +—f t+ O, at, 0?).

uo,()

Thus, when ¢ and 4 are small, the perturbatlon satisfies the linear equation,
N f f
Uy =~ f(U’Oa 3 (18)

uo,()

Comparing Equation 1.6 to 1.8, we see that in this example,

of
)‘(t) a_uuoyoa
_ o7
o0 = S0+ G

Note, this is a constant coefficient linear ODE.

Example 1.3 For the falling sphere problem in Fxamples 1.1 and 1.2, a linear ODE can
be derived by linearizing about the initial velocity ug. As shown above, this requires the
calculation of Of /Ou and Of /Ot. For the sphere,

af_al 1]: 1 0D

o ou |l my D)

my

my, Ou

1.1. THE FORWARD EULER METHOD 9

The value of 0D /0u is

oD 01 5 o
S = Bu 2pg7rauC’D(Re) ,

1 0Cp ORe
= pyra’uCp(Re) + EpgwaQuQ 9Re du
and 0Cp/0Re and ORe/0u can be found from their definitions given in Example 1.1. Also,

since f does not directly depend on t for this problem, 0f /0t = 0.

1.1 The Forward Euler Method

We now consider our first numerical method for ODE integration, the forward Euler method.
The general problem we wish to solve is to approximate the solution u(t) for Equation 1.5
with an appropriate initial condition, «(0) = uy. Usually, we are interested in approximating
this solution over some range of ¢, say from ¢t = 0 to ¢t = 7. Or, we may not know a
precise final time but wish to integrate forward in time until an event occurs (e.g. the
problem reaches a steady state). In either case, the basic philosophy of numerical integration
using finite difference methods is to start from a known initial state, u(0), and somehow
approximate the solution a small time forward, u(At) where At is a small time increment.
Then, we repeat this process and move forward to the next time to find, u(2At), and so on.
Initially, we will consider the situation in which At is fixed for the entire integration from
t =0 to T. However, the best methods for solving ODE’s tend to be adaptive methods in
which At is adjusted depending on the current approximation.

Before moving on to the specific form of the forward Euler method, let’s put some nota-
tions in place. Superscripts will be used to indicate a particular iteration. Thus, assuming
constant At,

t" = nAt.

The approximation from the numerical integration will be defined as v. Thus, using the
superscript notation,
v" = the approximation of u(t").

Now, let’s derive the forward Euler method. There are several ways to motivate the
forward Euler method. We will start with an approach based on Taylor series. Specifically,
the Taylor expansion of u(t"*1) about " is,

1
u(t™) = u(t") + Atug(t") + EAtQUtt(t") + O(AP).
Using only the first two terms in this expansion,
u(t™t) = u(t™) + Atuy(t").

Finally, the term u;(¢") is in fact just f(u(t"),t") since the governing equation is Equation 1.5.
Thus,
u(t") = u(t™) + Atf(u(t™),). (1.9)

10 LECTURE 1. ODE INTRODUCTION

In-class Discussion 1.1 (Graphical interpretation of Equation 1.9)

Since we do not know u(t"), we will instead use the approximation from the previous
timestep, v™. Thus, the forward Euler algorithm is,
vt =" + Atf(v",t") for n >0, (1.10)
and v° = u(0).
Example 1.4 Now, let’s apply the forward Euler method to solving the falling sphere prob-
lem. Suppose the sphere is actually a small particle of ice falling in the atmosphere at an
altitude of approximately 3000 meters. Specifically, let’s assume the radius of the particle is

a = 0.01m. Then, since the density of ice is approzimately p, = 917 kg/m?®, the mass of the
particle can be calculated from,

4
my, = pp Volume, = ppgwa3 = 0.0038 kg
At that altitude, the properties of the atmosphere are:
p, = 09kg/m®
Ly = 1.69E-5kg/(m sec)
g = 9.8m/sec?
We expect the particle to accelerate until it reaches its terminal velocity which will occur
when the drag force is equal to the gravitational force. But, a priori, we do not know how
long that will take (see In-class Discussion 1.2 for someways to make this estimate). For

now, let’s set T = 25 sec and use a timestep of At = 0.25 sec. The results are shown in
Figure 1.1.

1.1. THE FORWARD EULER METHOD

Forward Euler method

11

30 T T
o 20 i
[0
@
£
> 10 b
0 | | |
0 10 15 20 25
2 i
[0
o
1 i
0 | | |
0 10 15 20 25
0.6
3 05 L i
0.4 ‘ ‘ ‘
0 10 15 20 25
time (sec)

Figure 1.1: Behavior of velocity, Reynolds number, and drag coefficient as a function of time
for an ice particle falling through the atmosphere. Simulation performed using the forward

Euler method with At = 0.25 sec.

12 LECTURE 1. ODE INTRODUCTION

In-class Discussion 1.2 (Estimating time to reach terminal velocity)

1.2 The Midpoint Method

Now, let’s look at a second integration method known as the midpoint method. For this
method, we will use a slightly different point of view to derive it. Specifically, let’s start
from the definition of a derivative,

u(t + At) — u(t — At)
At—0 2At

Now, instead of taking the limit, assume a finite At. Then, we end up with an approximation
to du/dt:
_u(t+ At) —u(t — At)

u(t) ~ oA for small At

Then, we can re-arrange this to the following estimate for u(t + At),

u(t + At) = u(t — At) + 2Atu,(t) (1.11)

1.2. THE MIDPOINT METHOD 13

In-class Discussion 1.3 (Graphical interpretation of Equation 1.11)

Then, following the same process as in the forward Euler method, we arrive at the
midpoint method,

o™= "t F AL (0", 1) for n > L. (1.12)

However, because of the use of v"~!, the midpont method can only be applied for n > 1.

Thus, for the first timestep a different numerical method must be applied (e.g. the forward
Euler method).

Example 1.5 We will now solve the same problem as in Example 1.4 using the midpoint
method. Using the same values of At and T as before, the results are shown in Figure 1.2.
Clearly, something has gone wrong here as the results show non-physical oscillations. Perhaps
the oscillations will disappear if we take a smaller timestep. To test out this hypothesis, let’s
re-run the midpoint method with At = 0.025 sec which is one-tenth the previous timestep.
Those results are shown in Figure 1.3. Unfortunately, while the results are better, the oscil-
lations are clearly still present. For this problem, clearly the forward Fuler method is a better
choice than the midpoint method. We will see why this has happened in a few lectures.

14 LECTURE 1. ODE INTRODUCTION

Midpoint method

T T T

v (m/sec)

time (sec)

Figure 1.2: Behavior of velocity, Reynolds number, and drag coefficient as a function of time

for an ice particle falling through the atmosphere. Simulation performed using the midpoint
method with At = 0.25 sec.

1.2. THE MIDPOINT METHOD

50 T T

Midpoint method

15

T

v (m/sec)

x
—_
o

15

Re
o

15

time (sec)

15

20 25

Figure 1.3: Behavior of velocity, Reynolds number, and drag coefficient as a function of time
for an ice particle falling through the atmosphere. Simulation performed using the midpoint

method with At = 0.025 sec.

16

LECTURE 1.

ODE INTRODUCTION

Lecture 2

Convergence and Accuracy

This lecture is a bit on the technical side, but the concepts introduced are critical to the
analysis of finite difference methods for ODE’s.

2.1 Convergence and Global Accuracy

As the timestep is decreased, i.e. At — 0, the approximation from a finite difference method
should converge to the solution of the ODE. This concept is known as convergence and is
stated mathematically as follows:

Definition 2.1 (Convergence) A finite difference method for solving,
up = f(u,t) with — u(0) = ug
fromt =0 to T is convergent if

max _|v" — u(nAt)| — 0 as At — 0.
n=[0,T/At]

While convergence is a clear requirement for a good numerical method, the rate at which
the method converges is also important. This rate is known as the global order of accuracy.

Definition 2.2 (Global Order of Accuracy) A method has a global order of accuracy of
p if,

max _|v" — u(nAt)| < O(AP) as At — 0,
n=[0,T/At]

for any f(u,t) that has p continuous derivatives (i.e. wup to and including OF f /OtP and
oPf/ouP).

Thus, methods with higher p will converge to u(t) more rapidly than those methods with
lower p.

17

18 LECTURE 2. ACCURACY

0.8]

0.4f o .

0.2]

0.12 T T T T T T T T T

0.08 - * 1

error

0.06
0.04
*

0.02

Figure 2.1: Forward Euler solution for u; = —u? with »(0) = 1 with At = 0.1, 0.2, and 0.4.
Forward Euler (symbols) and exact solution (line) are shown in first plot. Error is shown in
second plot.

Example 2.1 To demonstrate the ideas of global accuracy, we will consider an ODE with
f = —u? and an initial condition of u(0) = 1. The solution to this ODE isu = (1+t)~. Now,
let us apply the forward Euler method to solving this problem fort = 0 to 10. The approrimate
solutions for a range of At are shown Figure 2.1 along with the exact solution. The forward
Euler solutions are clearly approaching the exact solution as At decreases. Furthermore, the
error appears to be decreasing by approrimately a factor of 2 for every factor of 2 decrease
in At. For example, if we look at t = 4, the error is seen to be 0.028, 0.013, and 0.0065 for
At = 0.4, 0.2, and 0.1, respectively. Thus, from these results, we would conclude that the
global accuracy of the forward Fuler method is p = 1 since the error is proportional to At.

Example 2.2 Now, let’s apply the midpoint method on the problem from Example 2.1. Sim-
tlar to the results observed in Example 1.5, the midpoint method shows an oscillatory behavior
(this may be a little hard to see because of scale of the figure, but the midpoint results are
basically oscillated about the exact solution, with the oscillations reducing for the smaller
timesteps). Note that the timesteps used in these results are a factor of 10 smaller than
those used with the forward Euler method in Fxample 2.1. Since the midpoint and the for-

2.2. LOCAL ACCURACY 19

ward Euler method require essentially the same work per timestep, the midpoint results took
about a factor of 10 more work than the forward Euler method for this problem. Another
interesting aspect of these results is that the error is actually increasing as t increases (in
the forward Euler results in Figure 2.1, the error decreased as t increased). Regardless, the
method does appear convergent since as the timestep decreases, so are the errors. In fact,
it appears that the errors are decreasing by a factor of 4 for a factor of 2 decrease in At.
For example, if we look at t = 4, the error (averaged to remove the oscillations) is seen to
be approxrimately 0.02, 0.005, and 0.00125 for At = 0.04, 0.02, and 0.01, respectively. Thus,
from these results, we would conclude that the global accuracy of the midpoint method 1us
p = 2 since the error is proportional to At?.

1¥ T T T T T T T T T
08|} .
06}

0.4

0.12

0.08

0.06 -

error

0.04 -

0.02

I

t

Figure 2.2: Midpoint solution for u; = —u? with u(0) = 1 with A¢ = 0.01, 0.02, and 0.04.
Midpoint method (symbols) and exact solution (line) are shown in first plot. Error is shown
in second plot.

2.2 Local Accuracy

The analysis of convergence and global accuracy usually relies on the analsysi of consistency
and local accuracy. Both convergence/global accuracy and consistency/local accuracy are

20 LECTURE 2. ACCURACY

related to the behavior of the error as At — 0. However, while convergence/global accuracy
is associated with the behavior of the error over a finite time (i.e. from ¢ = 0 to 7)),
consistency /local accuracy is associated with the behavior of the error for a single timestep.
If we can quantify how much the error changes in a single timestep, then we will have an
indication of how much the error could change over a series of timesteps. Specifically, let’s
write the solution error at ¢t = 7" as a sum of the change in error at each timestep,

T/At
e(T) = u(T) — vT/A = ZA@

where Ae™ is the change in the error from iteration n — 1 to n (i.e. the local error). Suppose
the local error is O(A#?*1), then the global error might be expected to behave as,

T/At
eT) = Y A,

n=1

T/At

= Z O(A#*!),

T
o@r

= O(AP).

Thus, the global error would be one order less than the local error because the local errors
sum for T'/At timesteps. However, the local errors do not have to sum this way if the
numerical method is not stable. But, if a numerical method is both consistent and stable,
this will be enough to guarantee convergence. For now, we concentrate on quantifying the
local accuracy and leave the discussion of consistency and stability for another lecture.

The local error (usually called the local truncation error) is the difference between the
approximate solution and the exact solution when using the exact solution for all of the
required data. Let’s consider the forward Euler method as an example. Recall, the forward
Euler method is,

V"t =" + Atf(v", 7).

Thus, for the forward Euler method, v"*! = v"*1(v™ At t"). Then, if we substitute the
exact solution into the right-hand side, we find,

v (U™, AL) = u™ 4+ Atf(u”,).

Recall our notation that u is the exact solution; in this discussion we use the superscript
notation u™ = u(nAt) realizing that u = wu(t). The local truncation error for the forward
Euler method is then,

Local truncation error = v" ! (u", At, ") — u"*t'. (2.1)
Substitution gives,

Local truncation error = u™ + Atf(u",t") — u""'.

2.2. LOCAL ACCURACY 21

The local order of accuracy is then found using a Taylor series expansion about t = t".
Recall that f(u™, t") = us(t") and

w(t™) = u(t?) + Atu, (") + %AtQutt(t") +O0(AL).

Substitution gives the local truncation error as,

Local truncation error = "+ Atf(u", ") — u™*!,

1
= u(t") + Atu,(t") — |u(t™) + Atu, (") + 5Ahtt(tn) + O(AP)

1

Thus, the leading term of the local trunction error for the forward Euler method is — %At%tt(t") =
O(At?). Based on our previous argument, we expect that the global accuracy of the forward
Euler method should be O(At) (i.e. first order accuracy). This was in fact observed in
Example 2.1.

In-class Discussion 2.1 (Local accuracy of the midpoint method)

Definition 2.3 (Local Order of Accuracy) Suppose we are given a numerical method
for solving uy = f(u,t) which we write in the following form,

"t = N o 0" LAY

22 LECTURE 2. ACCURACY

For simplicity, the possible dependence on t at various n has been omatted in the definition
of N (though it should be there). The local truncation error, T, is defined as,

7= N@"™ u™ u™t A —u (2.2)
and the local order of accuracy p 1s,
17| = O(A#*) as At — 0.

Note: the local order of accuracy is defined to be one less than the order of the leading term
of the local truncation error so that the local and global accuracy will be the same.

By the definition of the local order of accuracy, we see that the forward Euler method is
first order (p = 1) and the midpoint method is second order (p = 2).

Lecture 3

Convergence of Multi-Step Methods

In Lecture 2, we began the discussion of convergence. In this lecture, we will complete that
discussion for the class of numerical methods known as multi-step methods (a class that
includes the forward Euler and midpoint methods we have previously discussed).

3.1 Multi-step Methods

The class of finite difference methods known as multi-step methods is one of the most widely-
used approaches for solving ordinary differential equations, and forms the basis for solving
partial differential equations as well.

Definition 3.1 (Multi-step Methods) The generic form of an s-step multi-step method
18,

s s
Un—l—l + Zaivn—i-l—i — AtZBifn—H_i-
=0

i=1
A multi-step method with By = 0 is known as an explicit method since in this case the new
value v™! can be determined as an explicit function of known values (i.e. from v' and f;
with i < n). A multi-step method with By # 0 is known as an tmplicit method since in
this case the new value v is an implicit function of itself through the forcing function,

FrHt = f(ontl),
Example 3.1 Using the notation given in Definition 3.1, the forward Euler method is:
ar = —1 all other o; =0
B =1 all other B; =0
Example 3.2 Using the notation given in Definition 3.1, the midpoint method is:
ay = —1 all other o; =0

b1 =2 all other B; =0

23

24 LECTURE 3. CONVERGENCE

Example 3.3 In this example, we will derive the most accurate multi-step method of the

following form:

v " + 0™ = At B + Bof"]

The local truncation error for this method is,
= —oqu" — OQun—l + At [51f” + ﬁan—l] —
Substitution of f* = u} and "' =ul"! gives,
= —oqu" — au™ L+ At [&ut + Bou~ 1] — !

Then, Taylor series about t = t* are substituted for u™ ', u?™"', and u™t' to give,

1
6At3um + 1

+FALB " + At [ut N At%m 6At3u?ttt+0(At4)]

T = —oqu" — oy [— Atuy + At2utt At4umt + O(At5)]

[u + Atuy + AtQUtt + At?’uttt +3 At%mt + O(At5)]

Next, collect the terms in powers of At, which gives the following coefficients:

u: — ap — o -1
Atuf: a + B+ By — 1
At ul: - 2 — By — %
Al 2 + 2 - 1
AN THA - 2 — ﬂ6—2 — i

To find the most accurate multi-step method of the given form, we solve for the values of
a1, Qo, (1, and [y that result in the coefficients of the first four terms being identically zero.
The resulting values are:

a1=4 (1/2:—5 B1:4 ,32:2

Note, with these values, the leading error term is —%At‘luﬁm. Thus, the scheme s third order
accurate (p = 3).

3.2 Dahlquist Equivalence Theorem

In order for a multi-step method to be convergent (as described in Definition 2.1), two
conditions must be met:

Consistency: In the limit of At — 0, the method must be a consistent discretization of the
ordinary differential equation.

3.3. CONSISTENCY 25

Stability: In the limit of At — 0, the method must not have solutions that can grow
unbounded as n = T/At — oo.

The Dahlquist Equivalence Theorem in fact guarantees that a consistent and stable multi-
step method is convergent, and vice-versa:

Theorem 3.1 (Dahlquist Equivalence Theorem) A multi-step method is convergent if
and only if it s consistent and stable.

3.3 Consistency

As given in Definition 3.1, a s-step multi-step method can be written as,

S S
Un—l—l 4 Z aivn—l—l—i o AtZﬁifn_H_i — 0’
i=1 i=0
where the forcing terms have been moved to the left-hand side. Substituting the exact
solution, u(t), into the left-hand side will produce a remainder which is in fact the opposite
of the truncation error (see Equation 2.2),

u"TE Y e ALY BT = w T = Nt A = 7 (3.1)
i=1 =0

If we only require that 7 — 0 (i.e. 7= O(At)) as At — 0, the method will not generally be
consistent with the ODE. To see why, note that in the limit of At — 0, the forcing terms
will vanish since they are scaled by At¢. Thus, 7 — 0 would place a constraint only on the
a’s. Let’s look at that constraint on the a’s to build some insight. Substituting Taylor series
about ¢t = t" for the values of u gives,

")t = (1 +> ai> u" + O(At).

i=1 i=1
Thus, for 7 — 0 as At — 0 requires,

i=1

This constraint can be interpreted as requiring a constant solution, i.e. u(t) = constant,
to be a valid solution of the multi-step method. Clearly, this is not enough to guarantee
consistency with the ODE since the ODE requires u; = f(u,t).

To achieve a consistent discretization, we force 7/At — 0 (i.e. 7 = O(At?)). This
stronger constraint can be shown to enforce that the ODE is satisfied in the limit of At — 0:

T N, A et
At At
N um, . A — (U + Atuy + O(A?))
B At
N(u™ttu® . AY) —u™
= A7 —uy + O(At)

N ur, .. At) — u® " n
= (A) — f(u™,t") + O(At)

26 LECTURE 3. CONVERGENCE

Thus, in the limit of 7/At — 0 as At — 0, then the slope of the numerical method (i.e. the
first term) must be equal to the forcing at ¢”. In other words, the multi-step discretization
would satisfy the governing equation in the limit. An equivalent way to write this consistency
constraint is,

1 s) s]
: n+1 gl R S ny __ nY 4n) —
Aligo A7 v + iE:1 ;U ;:0 Bif u(t") — f(u(t"),t") = 0. (3.3)

In terms of the local accuracy, consistency requires that the multi-step method be at
least first-order (p = 1) since 7 = O(A# ™) and consistency requires that 7/At = O(A#?)
must go to zero (i.e. p > 1).

3.4 Stability

The remaining issue to determine is whether the solutions to the multi-step method can
grow unbounded as At — 0 for finite time 7". Consider again the s-step multi-step method:

s s
,Un-l-l + Zaivn—l—l—i — AtZﬂifn_H_i-
1=0

=1

In the limit of At — 0, the multi-step approximation will satisfy the following recurrence
relationship,
S
"+ ™t = 0. (3.4)
i=1
This recurrence relationship can be viewed a providing the characteristic or unforced behavior

of the multi-step method. In terms of stability, the question is whether or not the solutions
to Equation 3.4 can grow unbounded.

Definition 3.2 (Stability) A multi-step method is stable (also known as zero stable) if all
solutions to

S
"+ ™t =0,
=1

are bounded as n — 0.

To determine if a method if stable, we assume that the solution to the recurrence has the
following form,

where the superscript in the 2" term is in fact a power. Note: z can be a complex number.
If the recurrence relationship has solutions with |z| > 1, then the multi-step method would
be unstable.

Example 3.4 In Example 3.3, the most accurate two-step, explicit method was found to be,

v " — 50" = At (4" + 271

3.4. STABILITY 27

We will determne if this algorithm is stable. The recurrence relationship s,
vt 4™ — 5" = 0.
Then, substitution of v™ = v°2" gives,
242" — 5" = 0.
Factoring this relationship gives,
2" (z2 +4z — 5) =2""z-1)(z+5)=0.

Thus, the recurrence relationship has roots at z =1, z = =5, and z = 0 (n—1 of these roots).
The root at z = —5 will grow unbounded as n increases so this method is not stable. By the
Dahlquist Equivalence Theorem, this means the method is not convergent (even though it has
local accuracy p = 3 and is therefore consistent).

To demonstrate the lack of convergence for this method (due to its lack of stability),

we again consider the solution of uy = —u? with u(0) = 1. These results are shown in
Figure 3.1 These results clearly show the instability. Note that the solution oscillates as is
expected since the large parasitic root is negative (z = —5). Furthermore, decreasing At from

0.1 to 0.05 only causes the instability to manifest itself in shorter time (though the same
number of steps). Clearly, though the method is consistent, it will not converge because of
this instability.

In-class Discussion 3.1 (Stability of the midpoint method)

28 LECTURE 3. CONVERGENCE

20 T T T T T T T T T
*
At=0.1
10f :
N * * « * g
*
-10} -
-20 | | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t
20 T T T T T T T T T
At=0.05
10 « .
S Sk Sk E'
> 095 X Xk * ¥ * .
10 .
_20 | | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t
Figure 3.1: Most-accurate explicit, two-step multi-step method applied to @ = —u? with

u(0) =1 with At = 0.1 (upper plot) and 0.05 (lower plot).

Lecture 4

Systems of ODE’s and Eigenvalue
Stability

Until know, we have only addressed the integration of a single ODE. In this lecture, we
consider numerical methods for systems of ODE’s.

4.1 Nonlinear Systems

For a system of ODE’s, we have the same canonical form as for a scalar (see Equation 1.5),
up = f(u,), (4.1)

except that v and f are vectors of the same length, d:

UZ[Ul,U2,U3,"',Ud]T f:[f17f27f3a"'afd]T

Example 4.1 Nonlinear Pendulum

One manner in which a system of ODE’s occurs is for higher-order ODE’s. A classic
example of this are second-order oscillators such as a pendulum. The nonlinear dynamics of
a pendulum of length L satisfy the following second-order system of equations:

B + L sinf = 0, (4.2)
L
To transform this into a system of first-order equations, we define the angular rate, w,

Otzw.

Then, Equation 4.2 becomes,
wy + %sin 0 =0.

() ()

29

For this example,

30 LECTURE 4. SYSTEMS OF ODE’S

A forward Euler method was used to simulate the motion of a pendulum (with L = 1 m,
g = 9.8 m/sec?) released from rest at an angle of 45° at a timestep of At = 0.02 seconds.
The results are shown in Figure 4.1. While the oscillatory motion is evident, the amplitude
s growing which is not expected physically. This would indicate some kind of numerical
stability problem. Note, however, that if a smaller At were used, the amplification would still
be present but not as significant.

100 T T T T T T T T T

80 1

60 .

T

40 1

T

20 1

T

0 (degrees)
o
T
Il

100 ! ! ! ! ! ! ! ! !
0

Figure 4.1: Forward Euler solution for nonlinear pendulum with L = 1 m, g = 9.8 m/sec?,
and At = 0.02 seconds.

The same problem was also simulated using the midpoint method. These results are
shown in Figure 4.2. For this method and At choice, the oscillation amplitude is constant
and indicates that the midpoint method is a better choice for this problem than the forward
Euler method.

4.2 Linear Constant Coefficient Systems

The analysis of numerical methods applied to linear, constant coefficient systems can provide
significant insight into the behavior of numerical methods for nonlinear problems. Consider

4.2. LINEAR CONSTANT COEFFICIENT SYSTEMS 31

50 I I I I 1 1 1 1 1

40

30

20 1

10

L
o
T
l

|
N
o
T
]

|
w
o
T
]

|
IS
o
T
|

_50 ! ! ! ! ! ! ! ! !
0 1 2 3 4 5 6 7 8 9 10

Figure 4.2: Midpoint solution for nonlinear pendulum with L = 1 m, g = 9.8 m/sec?®, and
At = 0.02 seconds.

the following problem,
up = Au, (4.3)

where A is a d x d matrix. Assuming that a complete set of eigenvectors exists, the matrix
A can be decomposed as,

A= RAR ', A = diag(Ag, Ao,y -+, Ag), R=1\| ri|ro|rs|1a |75 (4.4)

The solution to Equation 4.3 can be derived as follows,

uy = Au
u, = RAR'w
R ', = AR 'u

Then, defining w = R™u,

32 LECTURE 4. SYSTEMS OF ODE’S

This system of equations is actually uncoupled from each other, so that each of the eigen-
modes has its own independent evolution equation,

(wj)e = A\jwj, foreachi=1tod

Since each of the eigenmodes has a solution w;(t) = w;(0) exp(A;t), then the solution for

u(t) can be written as,
d

u(t) =3 w;(0)ret’. (4.5)
i=1
Note that the eigenvalues are in general complex, \; = A;_ +14A;,. The imaginary part of
the eigenvalues determines the frequency of oscillations, and the real part of the eigenvalues
determines the growth or decay rate. Specifically,

M = M — (cos Nt + i sin \it) e

Thus, when A, > 0, the solution will grow unbounded as ¢ — oo.

4.3 Eigenvalue Stability for a Linear ODE

As we have seen, while numerical methods can be convergent, they can still exhibit insta-
bilities as n increases for finite At. For example, when applying the midpoint method to
either the ice particle problem in Example 1.5 or the simpler model problem in Example 2.2,
instabilities were seen in both cases as n increased. Similarly, for the nonlinear pendulum
problem in Example 4.1, the forward Euler method had a growing amplitude again indicat-
ing an instability. The key to understanding these results is to analyze the stability for finite
At. This analysis is different than the stability analysis we performed in Section 3.4 since
that analysis was for the limit of At — 0.
Suppose we are interested in solving the linear ODE,

Up = AU.
Consider the Forward Euler method applied to this problem,
" =™ + AAR". (4.6)
Similar to the zero stability analysis, we will assume that the solution has the following form,
V" = g™, (4.7)

where g is the amplification factor (and the superscript n acting on g is again raising to a
power). As in the zero stability analysis, we wish to determine under what conditions |g| > 1
since this would mean that v™ will grow unbounded as n — oo. Substituting Equation 4.7
into Equation 4.6 gives,

gt = (1 + MAt) g™

4.3. EIGENVALUE STABILITY FOR A LINEAR ODE 33

Thus, the only non-zero root of this equation gives,
g=1+4+ M\At,

which is the amplification factor for the forward Euler method. Now, we must determine
what values of AAt lead to instability (or stability). A simple way to do this for multi-step
methods is to solve for the stability boundary for which |g| = 1. To do this, let g = € (since
le?| = 1) where 6 = [0, 27r]. Making this substitution into the amplification factor,

e =1+t = Mt=¢Y—1.

Thus, the stability boundary for the forward Euler method lies on a circle of radius one
centered at -1 along the real axis and is shown in Figure 4.3.

3 T T T T T

Figure 4.3: Forward Euler stability region

For a given problem, i.e. with a given), the timestep must be chosen so that the
algorithm remains stable for n — co. Let’s consider some examples.

Example 4.2 Let’s return to the previous example, u; = —u? with u(0) = 1. To determine
the timestep restrictions, we must estimate the eigenvalue for this problem. As described in
Lecture 1, linearizing this problem about a known state gives the eigenvalue as A = 0f /0u =
—2u. Since the solution will decay from the initial condition (since u; < 0 because —u? < 0),
the largest magnitude of the eigenvalue occurs at the initial condition when u(0) = 1 and
thus, A = —2. Since this eigenvalue is a negative real number, the marimum At will occur

34 LECTURE 4. SYSTEMS OF ODE’S

at the maximum extent of the stability region along the negative real axis. Since this occurs
when AAt = —2, this implies the At < 1. To test the validity of this analysis, the forward
Euler method was run for a At = 0.9 and 1.1. The results are shown in Figure 4.4 which
are stable for At = 0.9 but are unstable for At = 1.1.

1 T T T T T T T T T

0.8
At=0.9

0.6

>

0.4

0.2

0**1**1**1**1*****1**1**
0 2 4 6 8 10 12 14 16 18 20

10 T T T T T T T

R
> 0 * FOOFFTF X R %,
*
5} .
*
_10 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20

t

Figure 4.4: Forward Euler solution for u, = —u? with u(0) = 1 with A¢ = 0.9 and 1.1.

Example 4.3 Next, let’s consider the application of the forward Fuler method to the pen-
dulum problem. For this case, the linearization produces a matriz,

ﬂ_ 0 —%cosd
ou \ 1 0

The eigenvalues can be found from the roots of the determinant of 0f /Ou — A :
of . —A —4cosf
det <% — AI) = det (1)\)

=)\2+%cos9:()

=)\::I:i\/%COSH

4.3. EIGENVALUE STABILITY FOR A LINEAR ODE 35

Thus, we see that the eigenvalues will always be imaginary for this problem. As a result,
since the forward FEuler stability region does not contain any part of the imaginary azis

(except the origin), no finite timestep exists which will be stable. This explains why the
amplitude increases for the pendulum simulations in Figure 4.1.

In-class Discussion 4.1 (Midpoint method eigenvalue stability region)

36

LECTURE 4. SYSTEMS OF ODE’S

Lecture 5

Stiffness and Implicit Methods

5.1 Stiffness

Stiffness is a general (though somewhat fuzzy) term to describe systems of equations which
exhibit phenoma at widely-varying scales. For the ODE’s we have been studying, this means
widely-varying timescales.

One way for stiffness to arise is through a difference in timescales between a forcing
timescale and any characteristic timescales of the unforced system. For example, consider
the following problem:

u; + 1000w = 100sin ¢, u(0) = 1. (5.1)

The forcing term oscillates with a frequency of 1. By comparison, the unforced problem
decays very rapidly since the eigenvalue is A = —1000. Thus, the timescales are different by
a factor of 1000.

Suppose we are only interested in the long time behavior of u(¢), not the initial transient.
We would like to take a timestep that would be set by the requirements to resolve the sint
forcing. For example, one might expect that setting At = 27/100 (which would result in 100
timesteps per period of the forcing) would be sufficient to have reasonable accuracy. However,
if the method does not have a large eigenvalue stability region, this may not be possible.
If a forward Euler method is applied to this problem, eigenvalue stability would limit the
At < 0.002 (since the eigenvalue is A = —1000 and the forward Euler stability region crosses
the real axis at -2). The results from simulations for a variety of At using forward Euler
are shown in Figure 5.1. For At = 0.001, the solution is well behaved and looks realistic.
For At = 0.0019, the approach of eigenvalue instability is evident as there are oscillations
during the first few iterations which eventually decay. For At = 0.002, the oscillations no
longer decay but remain throughout the entire simulation. Finally, for At = 0.0021, the
oscillations grow unbounded. A zoomed image of these results concentrating on the initial
time behavior is shown in Figure 5.2.

A more efficient approach to numerically integrating this stiff problem would be to use a
method with eigenvalue stability for large negative real eigenvalues. Implicit methods often
have excellent stability along the negative real axis. The simplest implicit method is the
backward Euler method,

"t =" + Atf(u" T . (5.2)

37

38 LECTURE 5. STIFFNESS

At=0.001

|

time

Figure 5.1: Forward Euler solution for u; + 1000u = 100sint with «(0) = 1 at At = 0.001,
0.0019, 0.002, and 0.0021.

The backward Euler method is first order accurate (p = 1). The amplification factor for this

method is,
1

1 — M\At
When) is negative real, then g < 1 for all At. The eigenvalue stability region for the
backward Euler method is shown in Figure 5.3. Only the small circular portion in the right-
half plane is unstable while the entire left-half plane is stable. Results from the application of
the backward Euler method to Equation 5.1 are shown in Figure 5.4. The excellent stability
properties of this method are clearly seen as the solution looks acceptable for all of the tested
At. Clearly, for the larger At, the initial transient is not accurately simulated, however, it
does not effect the stability. Thus, as long as the initial transient is not desired, the backward
Euler method will likely be a more effective solution strategy than the forward Euler method
for this problem.
Another popular implicit method is trapezoidal integration,

9= (5.3)

1
o™ = 0" 4 DAY [Fm) + Fm,)] (5.4)
Trapezoidal integration is second-order accurate (p = 2). The amplification factor is,
1+ S AAL
= — . 9.5
g — 2AAL (5-5)

The stability boundary for trapezoidal integration lies on the imaginary axis (see Figure 5.5).
Again, this method is stable for the entire left-half plane thus it will work well for stiff

5.1. STIFFNESS 39

X At=0.001
0
2 ! ! ! ! ! | | | |
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
2 T T T T T T T T T
At=0.0019
0
_2 | | | | | | | | 1
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
2 T T T T T T T T T
AN A
0 At=0.002
VvV
_2 | | | | | | | | 1
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
2 T T T T T T T l ‘ l\‘ l ‘
At=0.0021
0 ‘
_2 | | | | | | |
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
time

Figure 5.2: Forward Euler solution for u; + 1000u = 100sint with «(0) = 1 at At = 0.001,
0.0019, 0.002, and 0.0021. Same results as in Figure 5.1 just showing the small ¢ behavior
in more detail.

problems.

The accuracy of the forward Euler, backward Euler, and trapezoidal integration methods
are compared in Figure 5.6 for Equation 5.1. The error is computed as the maximum across
all timesteps of the difference between numerical and exact solutions,

E = max [v" —u(nAt)|.
n=[0,T/A{]

These results show that the forward Euler method is first order accurate (since the slope
on the log-log scaling is 1) once the At is small enough to have eigenvalue stability (for
At > 0.002 the algorithm is unstable and the errors are essentially unbounded). In contrast,
the two implicit methods have reasonable errors for all At’s. As the At become small, the
slope of the backward Euler and trapezoidal methods become essentially 1 and 2 (indicating
first and second order accuracy). Clearly, if high accuracy is required, the trapezoidal method
will require fewer timesteps to achieve this accuracy.

Stiffness can also arise in linear or linearized systems when eigenvalues exist with signif-
icantly different magnitudes. For example,

—1 1
u; = Au, Az(0 _1000>.

The eigenvalues of A are A = —1 and A = —1000. Since the timestep must be set so that
both eigenvalues are stable, the larger eigenvalue will dominate the timestep. The spectral

40 LECTURE 5. STIFFNESS

Imag A t
o

-3 -2 -1 0 1 2 3
Real AMA t

Figure 5.3: Backward Euler stability region

condition number is the ratio of the largest to smallest eigenvalue magnitudes,

max |\;
Spectral Condition Number = J
min ||

When the spectral condition number is greater than around 1000, problems are starting to
become stiff and implicit methods are likely to be more efficient than explicit methods.

Example 5.1 (Stiffness from PDE discretizations) One of the more common ways for
a stiff system of ODE’s to arise is in the discretization of time-dependent partial differential
equations (PDE’s). For example, consider a one-dimensional heat diffusion problem that is
modeled by the following PDE for the temperature, T':

PCp

where p, c,, and k are the density, specific heat, and thermal conductivity of the material,
respectively. Suppose the physical domain for of length L from x = 0 to x = L. A finite
difference approximation in x might divide the physical domain into a set of equally spaced
nodes with distance h = L/(N — 1) where N is the total number of nodes including the
endpoints. So, node i would be located at x; = ih. Then, at each node, T,, is approzi-
mated using a finite difference derivative. For example, at node 1 we might use the following
approximation,
Tipn — 2T+ T

h? ’
Note: we will discuss finite difference discretizations of PDE’s in detail in Lecture 8. Using
this in the heat diffusion equation, we can find the time rate of change at node i as,

kT =21+ T,
PCp h? '

Tt|z =

5.1. STIFFNESS 41

1 T T

At=0.0005

0 1 2 3 4 5 6 7 8 9 10
1 T T T T T T T T T
At=0.05
O -
- I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10
1 T T T T T T T T T
At=0.5
0, -
- I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10

time

Figure 5.4: Backward Euler solution for u; 4+ 1000u = 100sint with «(0) = 1 at A¢ = 0.0005,
0.005, 0.05, and 0.5.

Thus, the Ty at node i depends on the values of T at nodes i — 1, i, and i + 1 in a linear
manner. Since each node in the interior of the domain will satisfy the same equation, we can
put the finite difference discretization of the heat diffusion problem into our standard system
of ODE’s form,

up = Au+b, u = [Ty, T3, Ty, ..., Tn]",

where A will be a tri-diagonal matriz (i.e. only the main diagonal and the two neighboring
diagonals will be non-zero) since the finite difference approzimation only depends on the
neighboring nodes. The vector b will depend on the specific boundary conditions.

The question is how do the eigenvalues of A behave, in particular, as the node spacing h
15 decreased. To look at this, we arbitrarily choose,

since the magnitudes of these parameters will scale the magnitude of the eigenvalues of A by
the same value but not alter the ratio of eigenvalues (the ratio is only altered by the choice
of h/L). Figure 5.7 shows the locations of the eigenvalues for h/L = 0.1 and h/L = 0.05.
The eigenvalues are negative real numbers. The smallest magnitude eigenvalues appear to be
nearly unchanged by the different values of h. However, the largest magnitude eigenvalues
appear to have increased by a factor of 4 from approximately —400 to —1600 when h decreased
by a factor of 2. This suggests that the ratio of largest-to-smallest magnitude eigenvalues (i.e.
the spectral condition number) is O(1/h?). Table 5.1 confirms this depends for a range of

42 LECTURE 5. STIFFNESS

Stable Unstable

Imag A t

Figure 5.5: Trapezoidal intgeration stability region

h/L | min|)| | max|)| | max|)|/ min|}|

0.001 9.87 | 3999990 405284
0.01 9.86 39990 4052
0.1 9.79 390 40

Table 5.1: Minimum and maximum magnitude eigenvalues for one-dimensional diffusion

h/L values and also confirms that the smallest eigenvalue changes very little as h decreases.

In-class Discussion 5.1 (How does At vary with A for forward Euler?)

5.2 Implicit Methods for Linear Systems of ODE’s

While implicit methods can allow significantly larger timesteps, they do involve more work
than explicit methods. Consider the forward method applied to u; = Au where Aisa d x d
matrix.

" =" + AtAV™.

5.3. IMPLICIT METHODS FOR NONLINEAR PROBLEMS 43

3

10 |
Forward Euler Rty
Slope = 1.08

S R Backward-Euler e

@ Slope = 0.94 7

£ 102 : . .
£ *

x e

‘E“ A

7
.. Trapezoidal
% - Slope = 2.05

10” 107° 10°
At

Figure 5.6: Comparison of error for forward Euler, backward Euler, and trapezoidal integra-
tion versus At for u; + 1000u = 100 sin ¢ with u(0) = 1.

In this explicit algorithm, the largest computational cost is the matrix vector multiply, Av™
which is an O(d?) operation. Now, for backward Euler,

,Un+1 =" + AtAUn+1.
Re-arranging to solve for v"*! gives:

v = " AtAv™H
o™ — AtATTE = 7

(I —AtA) ™ =

)

)

Thus, to find v™*! requires the solution of a d x d system of equations which is an O(d?) cost.
As a result, for large systems, the cost of the O(d®) linear solution may begin to outweigh
the benefits of the larger timesteps that are possible when using implicit methods.

5.3 Implicit Methods for Nonlinear Problems

When the ODE’s are nonlinear, implicit methods require the solution of a nonlinear system
of algebraic equations at each iteration. To see this, consider the use of the trapezoidal
method for a nonlinear problem,

1
o= 0" DAL [fm)+ f(0)]

44 LECTURE 5. STIFFNESS

h/L=0.1
0.5F ,
<
g of kK ok Kk Kk ok x kA
-0.5F B
9 | | | | | | |
-1600 -1400 -1200 -1000 -800 -600 -400 -200 0
Real A
’
0.5F h/L =0.05 i
<
g Of* % * x % % * * * * * ¥ % k% % %N
-0.51 B
_1 Il Il Il Il Il Il Il
-1600 -1400 -1200 -1000 -800 -600 -400 -200 0

Real A

Figure 5.7: Eigenvalues for discretization of one-dimenionsal diffusion equation for A/L = 0.1
and h/L = 0.05.

We can define the following residual vector for the trapezoidal method,
1
R(w)=w—v" — EAt [f(w,t”“) + f(v", t")] :

Thus, v™** for the trapezoidal method is given by the solution of,

R(v™t) =0,

which is a nonlinear algebraic system of equations for v

One of the standard methods for solving a nonlinear system of algebraic equations is the
Newton-Raphson method. It begins with an initial guess for v"*! and solves a linearized
version of R = 0 to find a correction to the initial guess for v"*!. So, define the current
guess for v"*! as w™ where m indicates the sub-iteration in the Newton-Raphson method.
Note, common useage is to call the iterations in the Newton-Raphson solution for v™*! sub-
iterations since these are iterations which occur within every time iteration from n to n+ 1.
To find the correction, Aw, where

w™ = w™ + Aw,

we linearize and solve the nonlinear residual equation,

R(w™) = 0,
R(w™ 4+ Aw) = 0,
OR
™y 2 Aw =

R(w™) + .. w 0,
OR
9% Aw = —R(w™). .
o, w R(w™) (5.6)

5.4. BACKWARDS DIFFERENTIATION METHODS 45

p o ay a3 ou P
1 -1 1
4 1 2
2 3 3 3
3 18 9 _2 6
11 11 11 11
4 48 36 _16 3 12
25 25 25 25 25

Table 5.2: Coeflicients for backward differentiation methods

This last line is a linear system of equations for the correction since OR/0w is a d X d matrix
when the original ODE’s are a system of d equations. For example, for the trapezoidal
method,

oR 1. 0f

%wmzl—§At%w .

m

Usually, the initial guess for v"*! is the previous iteration, i.e. w°

iteration from n to n + 1 has the following form,

= v™. So, the entire

0

1. Set initial guess: w” = v™ and m = 0.

[\

. Calculate residual R(w™) and linearization OR/0w|m.

w

. Solve Equation 5.6 for Aw.
4. Update w™ = w™ + Aw.

5. Check if R(w™*!) is small. If not, perform another sub-iteration.

5.4 Backwards Differentiation Methods

Backwards differentiation methods are one of the best multi-step methods for stiff problems.
The backwards differentiation formulae are of the form,

,Un—I—l + Zvn+1—i — Atﬁofn_H. (57)

=1

The coefficients for the first through fourth order methods are given in Table 5.2. The
stability boundary for these methods are shown in Figure 5.8. As can be seen, all of these
methods are stable everywhere on the negative real axis, and are mostly stable in the left-half
plane in general. Thus, backwards differentiation work well for stiff problems in which stong
damping is present.

Example 5.2 (Matlab’s ODE Integrators) Matlab has a a set of tools for integration of
ODE’s. We will briefly look at two of them: ode45 and odel5s. ode45 is designed to solve
problems that are not stiff while ode15s is intended for stiff problems. ode45 is based on a
four and five-stage Runge-Kutta integration (discussed in Lecture 6), while ode15s is based

46 LECTURE 5. STIFFNESS

1 0 T

Imag A At
o
T

AN
1

2+ 1
—4t+ 1
-6 B

-8t B

-10 ‘ ‘ w
-5 0 5 10 15

Real L At

Figure 5.8: Backwards differentiation stability regions for p = 1 through p = 4 method.
Note: interior of curves is unstable region.

on a range of highly stable implicit integration formulas (one option when using ode15s is
to use the backwards differentiation formulas). As a short illustration on how these Matlab
ODE integrators are implemented, the following script solves the one-dimensional diffusion
problem from Example 5.1 using either ode45 or odel5s. The specific problem we consider
here is a bar which is initially at a temperature T;,;; = 400K and at t = 0, the temperature
at the left and right ends is suddenly raised to 800K and 1000K, respectively.

% Matlab script: difld_main.m

h

% This code solve the one-dimensional heat diffusion equation
% for the problem of a bar which is initially at T=Tinit and
% suddenly the temperatures at the left and right change to

% Tleft and Tright.

b

% Upon discretization in space by a finite difference method,
% the result is a system of ODE’s of the form,

b

% ut =Au +b

h

% The code calculates A and b. Then, uses one of Matlab’s

% ODE integrators, either ode45 (which is based on a Runge-Kutta

5.4. BACKWARDS DIFFERENTIATION METHODS

% method and is not designed for stiff problems) or odelbs (which

% is based on an implicit method and is designed for stiff problems).

b
clear all; close all;
sflag = input(’Use stiff integrator? (1=yes, [default=nol): ’);

% Set non-dimensional thermal coefficient
k =1.0; % this is really k/(rho*cp)

% Set length of bar
L =1.0; % non-dimensional

% Set initial temperature
Tinit = 400;

% Set left and right temperatures for t>0
Tleft = 800;
Tright = 1000;

% Set up grid size
Nx = input([’Enter number of divisions in x-direction: [default=’

’511°1);
if (isempty(Nx)),
Nx = bi;
end
h = L/Nx;
x = linspace(0,L,Nx+1);

% Calculate number of iterations (Nmax) needed to iterate to t=Tmax
Tmax = 0.5;

% Initialize a sparse matrix to hold stiffness & identity matrix
A = spalloc(Nx-1,Nx-1,3%(Nx-1));

I = speye(Nx-1);

% Calculate stiffness matrix

for ii = 1:Nx-1,

if (ii > 1),
A(ii,ii-1) = k/h"2;

47

48 LECTURE 5. STIFFNESS

end

if (ii < Nx-1),
A(ii,ii+1) = k/h"2;
end

A(ii,ii) = -2%k/h"2;
end

% Set forcing vector

b = zeros(Nx-1,1);

b(1) = kxTleft/h"2;
b(Nx-1) = k*Tright/h~2;

% Set initial vector
vO = Tinit*ones(1,Nx-1);

if (sflag == 1),

% Call ODE15s
options = odeset(’Jacobian’,A);
[t,v] = odel5s(@difid_fun, [0 Tmax],v0,options,A,b);

else

% Call ODE45
[t,v] = ode45(@difi1d_fun,[0 Tmax],v0,[],A,b);

end

% Get midpoint value of T and plot vs. time
Tmid = v(:,floor(Nx/2));

plot(t,Tmid) ;

xlabel(’t’);

ylabel(’T at midpoint’);

As can be seen, this script pre-computes the linear system A and the column vector b
since the forcing function for the one-dimensional diffusion problem can be written as the
linear function, f = Av +b. Then, when calling either ODFE integrator, the function which
returns f is the first argument in the call and is named, difld_fun. This function is given
below:

% Matlab function: difid_fun.m
%

5.4. BACKWARDS DIFFERENTIATION METHODS 49

% This routine returns the forcing term for

% a one-dimensional heat diffusion problem

% that has been discretized by finite differences.

% Note that the matrix A and the vector b are pre-computed
% in the main driver routine, difid_main.m, and passed

% to this function. Then, this function simply returns

% f£(v) = Axv + b. So, in reality, this function is

% not specific to 1-d diffusion.

function [f] = difid_fun(t, v, A, b)

f = Axv + Db;

As can be seen from difld_fun, A and b have been passed into the function and thus the
calculation of f simply requires the multiplication of v by A and the addition of b.

The major difference between the implementation of the ODE integrators in Matlab and
our discussions is that Matlab’s implementations are adaptive. Specifically, Matlab’s inte-
grators estimate the error at each iteration and then adjust the timestep to either improve
the accuracy (i.e. by decreasing the timestep) or efficiency (i.e. by increasing the timestep).

The results for the stiff integrator, ode15s are shown in Figure 5.9(a). These results

(a) odel5s (b) oded5 (c) ode45 zoom

Figure 5.9: Temperature evolution at the middle of bar with suddenly raised end tempera-
tures using Matlab’s odel5s and ode45 integrators.

look as expected (note: in integrating from t = 0 to t = 0.5, a total of 64 timesteps were
taken).

The results for the non-stiff integrator are shown in Figure 5.9(b) and in a zoomed view in
Figure 5.9(c). The presence of small scale oscillations can be clearly observed in the ode45
results. These oscillations are a result of the large negative eigenvalues which require small
At to maintain stability. Since the ode45 method is adaptive, the timestep automatically
decreases to maintain stability, but the oscillatory results clearly show that the stability is
barely achieved. Also, as a measure of the relative inefficiency of the ode45 integrator for
this stiff problem, note that 6273 timesteps were required to integrate fromt =0 to t = 0.5.

90 LECTURE 5. STIFFNESS

One final concern regarding the efficiency of the stiff integrator odel15s. In order for
this method to work in an efficient manner for large systems of equations such as in this
example, it is very important that the Jacobian matriz, 0f /Ou be provided to Matlab. If
this is not done, then odelbs will construct an approximation to this derivative matrix
using finite differences and for large systems, this will become a significant cost. In the
script dif1d_main, the Jacobian is communicated to the odel5s integrator using the odeset
routine. Note: ode4d is an explicit method and does not need the Jacobian so it is not
provided in that case.

Lecture 6

Runge-Kutta Methods

In the previous lectures, we have concentrated on multi-step methods. However, another
powerful set of methods are known as multi-stage methods. Perhaps the best known of
multi-stage methods are the Runge-Kutta methods. In this lecture, we give some of the
most popular Runge-Kutta methods and briefly discuss their properties.

6.1 Two-stage Runge-Kutta Methods

A popular two-stage Runge-Kutta method is known as the modifed Euler method:

a = Atf(v",t")
b = Atf(v" +a/2,t" + At/2)

o™t = " 4b
Another popular two-stage Runge-Kutta method is known as the Heun method:

a = Atf(v",t")
b = Atf(v" +a,t" + At)

1
"t = " 4 §(a+b)

As can been seen with either of these methods, f is evaluated twice in finding the new
value of v"*!: once to determine a and once to determine b. Both of these methods are
second-order accurate, p = 2.

6.2 Four-stage Runge-Kutta Method

The most popular form of a four-stage Runge-Kutta method is:

a = Atf(v", ")
b = Atf(v" +a/2,t" + At/2)
c = Atf(v"+b/2,t" + At/2)

ol

92 LECTURE 6. RUNGE-KUTTA METHODS

d = Atf(v" +c,t" + At)
1
vt = v"+8(a+2b+20—1—d)

Note that this method requires four evaluations of f per iteration. This method is fourth-
order accurate, p = 4.

6.3 Stability Regions

The eigenvalue stability regions for Runge-Kutta methods can be found using essentially the
same approach as for multi-step methods. Specifically, we consider a linear problem in which
f = Au where) is a constant. Then, we determine the amplification factor g = g(AAt). For
example, let’s look at the modified Euler method,

a = AtW"
b = AtA (V" + Ath"/2)
o™t = ™ 4+ AN (V™ + AtA"/2)

1
o™ = |14 AtA + E(AM)Q v"
1
=g = 1+)At+ E(AAt)Q
A similar derivation for the four-stage scheme shows that,
1 2 1 g |1 4
g=1+ At + E(AAt) + E(AAt) + ﬂ()\At) .

When analyzing multi-step methods, the next step would be to determine the locations
in the AAt-plane of the stability boundary (i.e. where |g| = 1). This however is not easy for
Runge-Kutta methods and would require the solution of a higher-order polynomial for the
roots. Instead, the most common approach is to simply rely on a contour plotter in which
the AAt-plane is discretized into a finite set of points and |g| is evaluated at these points.
Then, the |g| = 1 contour can be plotted. The following is the Matlab code which produces
the stability region for the second-order Runge-Kutta methods (note: g(AAt) is the same
for both second-order methods):

% Specify x range and number of points

x0 = -3;
x1 = 3;
Nx = 301;

% Specify y range and number of points

yo = -3;
yl = 3
Ny = 301;

6.3. STABILITY REGIONS 93

% Construct mesh

XV = linspace(x0,x1,Nx);
yv linspace(y0,y1,Ny);
[x,y] = meshgrid(zv,yv);

% Calculate z
Z = X + ixy;

% 2nd order Runge-Kutta growth factor
g=1+2z+ 0.5%z.72;

% Calculate magnitude of g
gmag = abs(g);

% Plot contours of gmag
contour(x,y,gmag, [1 1],°k-’);
axis([x0,x1,y0,y1]);
axis(’square’);

xlabel(’Real \lambda\Delta t’);
ylabel(’Imag \lambda\Delta t’);
grid on;

The plots of the stability regions for the second and fourth-order Runge-Kutta algorithms
is shown in Figure 6.1. These stability regions are larger than those of multi-step methods.
In particular, the stability regions of the multi-stage schemes grow with increasing accuracy
while the stability regions of multi-step methods decrease with increasing accuracy (see
Appendix A).

04 LECTURE 6. RUNGE-KUTTA METHODS

Imag AA t
o
T

4-stage

Real \A t

Figure 6.1: Stability boundaries for second-order and fourth-order Runge-Kutta algorithms
(stable within the boundaries).

Lecture 7

Comnservation Laws and the Finite
Volume Method

7.1 Conservation Laws

In most engineering applications, the physical system is governed by a set of conservation
laws. For example, in gas dynamics, the conservation of mass, momentum, and energy are
applied to the gas. These conservation laws are often written in integral form for a fixed
physical domain. Suppose we have a two-dimensional physical domain, €2, with the boundary
of the domain, §{2. Then, the canonical conservation equation assuming that the physical
domain is fixed is of the form,

d - -

2 [Uaa / F(U)i GU'-*d:/SU,tdA, 7.1

= [vaa+ [[FO)i+6w)y]-ids = | s, (7.1)
where U is the conserved state, F' and G are the flux of the conserved state in the z and y
directions, 7 is the outward pointing unit normal on the boundary of the domain, and S is
a source term.

This conservation law can be written as a partial differential equation by applying the
divergence theorem which states that,

/m [Fi +Gj -ﬁds:/Q@i ‘2(;) dA. (7.2)

Thus, Equation 7.1 becomes,

d g hrd - _
E/{)UdA—i—/(SQ(Fz—i—Gj)-nds—/QSdA,

dA + /<a_F+@> dA:/QSdA,

oU OF oG
/(EJra_era_y_S) dA = 0.

)

96 LECTURE 7. FINITE VOLUME METHOD

Thus, since this last equation would remain valid for any arbitrary domain, €2, this means
that the integrand must be zero everywhere, or, equivalently,

ou OF 0G
— 4+ —4+—=—=05 7.3
ot oz oy (7.3)
Equation 7.3 is the conservation law written as a partial differential equation.

Example 7.1 (Conservation of Mass for a Compressible Fluid) An ezample of a con-
servation law is the conservation of mass for a compressible fluid. Let the fluid density be
p(z,y,t) and the fluid x and y velocity components be u(zx,y,t) and v(z,y,t), respectively.
Then, the conservation of mass for the fluid is,

%/ﬂpdA+/m [puz+pvj] -nnds = 0.

In terms of the canonical form,

U = p,
F = pu,
G = pv,
S = 0.

Example 7.2 (The Euler Equations for a Compressible Fluid) Often, multiple con-
servation laws are of interest. In this case, U is a vector of conserved states. Furthermore,
F, G, and S are vectors. As an example, the Euler equations for a compressible fluid in
two-dimensions are the combination of conservation of mass, r-momentum, y-momentum,
and energy. In this case,

p pu pv

v=| " F= pu’ +p G = ’OQUU S=0.
pv pUv pv°+p
pE puH pvH

The first row of these vectors represents the conservation of mass (see Example 7.1 for more).
The second and third row represent conservation of x and y momentum, respectively. And,
the fourth row represents conservation of energy. Note that in addition to the fluid density
(p) and the x and y velocity components (u and v), the other quantities in these equations
are:

p = static pressure,
E = total energy,
H = total enthalpy.

The total energy and total enthalpy are related by,

H=5+2
P

7.2. CONVECTION o7

This system of equations is not quite complete, however, since the number of equations does
not equal the number of dependent variables in the equations. In particular, note that we
have given five equations thus far (the four conservation equations and the relationship of H
to E) while the number of dependent variables is siz (i.e. p, u, v, p, E, and H). The final
equation is an equation of state. Often, we assume an ideal gas and use the ideal gas law.
In terms of the dependent variables we have introduced, the ideal gas law can be written as,

p=(r—1) [pE — ol +47)]. (7.4)

where 7y is the ratio of specific heats (for air, v =~ 1.4). Many of you may be more familiar
with the ideal gas law in the form, p = pRT where R is the gas constant and T is the
temperature. Equation 7.4 is (in fact) equivalent to p = pRT but Equation 7.4 is used since
p = pRT introduces a new dependent variable (i.e. the temperature) and would therefore
require yet another state equation to complete the system.

7.2 Convection

In many applications, especially those in fluid dynamics, convection is the dominant physical
transport mechanism over much of the domain of interest. While diffusion is always present,
often its affects are smaller except in limited regions (often near solid boundaries where
boundary layers form due to the combined effects of diffusion and convection).

In this section, we will derive the convection equation using the conservation law as given
in Equation 7.1. Specifically, let U be the 'conserved’ scalar quantity and let the fluxes be
given by,

F =ul, G = U, S =0, (7.5)

where u(z,y,t) and v(z,y,t) are known velocity components. Note, a non-zero source term
could be included, but for simplicity is assumed to be zero. As a PDE, this scalar conservation
law is,

ou 0 0
§+8_x(UU)+@(UU)_O

This equation can be manipulated by expanding the z and y derivatives into,

8_U+ ou oUu _ %_'_8_1)
ot Ox oy or 0Oy)

Often a reasonable assumption is that the velocity field is divergence free such that du/0x +
Ov/0y = 0. In this case, we arrive at what is commonly referred to as the convection
equation,

ou ou oUu

E + ua—m + U@ =
Physically, this equation states that following along the streamwise direction (i.e. convecting
with the velocity), the quantity U does not change.

In developing numerical methods for convection-dominated problems, we will often rely
on insight that can be gained from the convection equation for the specific case when the

0. (7.6)

o8 LECTURE 7. FINITE VOLUME METHOD

velocity field is a constant value, i.e. u(x,y,t) = v and v(z,y,t) = v. In this situation, the
solution to Equation 7.6 has the following form,

U(z,y,t) =Uy(&,n) where &=z —ut, n=1y—ut, (7.7)

where Up(z,y) is the distribution of U at time ¢ = 0. By substitution, we can confirm that
this indeed is a solution of Equation 7.6,

oUu oUu oUu 0 0 0
o TV T Vay an(fj n) + Ua—mUo(fa n) + Ua—yUO(faﬂ)
_ UNOE_ Uydy (OUy0E Uydn) | (UpdE . Uydn
0 Ot On ot 0¢ Ox On O o0& 0y On Oy
The partial derivatives of £ and n are,
o L
at 8:5_1’ ay_o’
on _ on o On _
- e gy Tk
Upon substitution of these partial derivatives,
a—U—i-ua—U—i-va—U = —u%—l-—vaUO-i-uaUO -I-vaUO
ot oz oy o€ on o€ on’

= 0.

Thus, U(x,y,t) = Up(x — ut,y — vt) is a solution to the convection equation.

Example 7.3 (Two-dimensional Convection) 7o illustrate the behavior of the 2-D con-
vection equation, we consider a specific problem. Suppose that the velocity is at 45 degrees
with respect to the x-axis such that,

Also, suppose that the initial distribution of U 1is,
Uo(x,y) _ 67w2720y2_

In Figure 7.1, the initial distribution of U is shown (i.e. att = 0) as well as the distribution
of U att = 1. Clearly, the contours have moved along the 45 degree line (shown as a dashed
line in the figure). Initially, the contours are centered at the origin and then att =1 they are
centered at xt =y = 1. A plot of U along the dashed line is shown in Figure 7.2. Since this
line is tangent to the convection direction, the distribution of U convects without changing
shape as t increases.

7.3. FINITE VOLUME METHOD FOR CONVECTION 99

/
7/
/
e

150 Contours att=1
1+
0.5
> OF
-0.5F
s
-1.5F

/
/7
/
_2 Il Il Il Il Il Il Il
-2 -1.5 -1 -0.5 0 0.5 1 15 2

Figure 7.1: Distribution of U at ¢ = 0 and at ¢ = 1 for a convection problem with velocities
u=uv=1.

7.3 Finite Volume Method for Convection

In this section, we will discuss the finite volume method. Our initial focus will be on con-
vection and we will assume that the velocity field is divergence free. Thus, the integral
conservation law (i.e. Equation 7.1) with fluxes given by Equation 7.5 is completely equiva-
lent to the PDE for convection (i.e. Equation 7.6).

7.3.1 One-Dimensional Convection

In one-dimensional problems, the assumption that the velocity is divergence free, i.e. du/0x =
0, forces the velocity to be constant with respect to = (though u could change with).

The basis of the finite volume method is the integral convervation law. The essential idea
is to divide the domain into many control volumes and approximate the integral conservation
law on each of the control volumes. For example, as shown in Figure 7.3, cell i lies between
the points at T; 1 and x; L. Note that the points do not have to be equally-spaced.

The one-dimensional form of Equation 7.1 is

e+), - PO, = [SW 1 d 7.8
G| Uit PO, - FO),, = [" S5@.1)dz. (79)

60 LECTURE 7. FINITE VOLUME METHOD

0.9

0.8

0.7

0.6

0.3

0.2

0.1

Figure 7.2: Distribution of U along y = z at ¢ = 0 and at ¢ = 1 for a convection problem
with velocities u = v = 1.

Figure 7.3: Mesh and notation for one-dimensional finite volume method.

Thus, applying this to control volume ¢ (and recalling that S = 0 for convection) gives,

. xZ.
z+7 1,—%

d [Tl
2 — = . .
iUt FOL, - PO, =0 (79)

Next, we define the mean value of U in control volume ¢ as,

1 Tipl
/ *Udz, where Az;=x;,1 —12, 1.
T

i = A 1
A.’L’i .1 2 2
i3
Then, Equation 7.9 becomes,

au;
Amiﬁ + F(U)|wi+% — F(U)‘wi,% =0. (7.10)
At this point, no approximations have been made thus Equation 7.10 is exact. Now, we make
the first approximation. Specifically, we assume that the solution in each control volume is
constant,
Uz, t) =Ui(t) for =z 1 <z <my1.

(3

Thus, the finite volume approximation will be piecewise constant as shown in Figure 7.4.

7.3. FINITE VOLUME METHOD FOR CONVECTION 61

U;

Uita

Titd

™
|
M=

Figure 7.4: Piecewise constant solution for one-dimensional finite volume method.

With this assumed form of the solution, the next issue is to determine the flux at i + % at
a time ¢. This can be done with the knowledge that the solution convects with the velocity
u(t). Thus, for the initial instant after ¢ (which we denote as t* = ¢ + ¢ where € is an
infinitessimal, positive number):

LS
2

[U ifu(t)>0

The flux can be calculated directly from this value of U,

) = { u(t)U;(t) if u(t) >0

Fa .t w(t)Uisa(t) if u(t) <0

14357

An alternative way to write this flux which is valid regardless of the sign of u(t) is,

Flayy3, %) = qu(t) Wen () + U(0)] — 5l Uent) ~ U] (7.10)
These fluxes, which use the upstream value of U to determine the flux. are known as an
‘upwind’ flux.

The final step in arriving at a full-discrete approximation for one-dimensional convection
is to discretize Equation 7.10 in time. This can be done choosing any of the ODE integration
methods we studied previously. For simplicity, we choose the forward Euler method so that
the final fully-discrete form of the finite volume method is,

Az; 7At +Fl~+% _Fi—% =0, (7.12)
where we use the notation,
Fz’+§:§“ (i+1+Ui)_§|U|(i+1—Ui)- (7.13)

Example 7.4 (Finite Volume Method applied to 1-D Convection) The following Mat-
lab script solves the one-dimensional convection equation using the finite volume algorithm
given by Fquation 7.12 and 7.13. The problem 1is assumed to be periodic so that whatever
leaves the domain at x = xg re-enters it at x = xr,.

62 LECTURE 7. FINITE VOLUME METHOD

% Script: convectid.m
clear all;

% Set-up grid

xL = -4;
xR = 4;
Nx = 40; % number of control volumes

x = linspace(xL,xR,Nx+1);

% Calculate midpoint values of x in each control volume
xmid = 0.5%(x(1:Nx) + x(2:Nx+1));

% Calculate cell size in control volumes (assumed equal)
dx = x(2) - x(1);

% Set velocity
u-=1;

% Set final time
tfinal = 1;

% Set timestep
CFL = 0.5;
dt = CFLx*dx/abs(u);

% Set initial condition to U0 = exp(-x~2)

% Note: technically, we should average the initial

% distribution in each cell but I chose to just set

% the value of U in each control volume to the midpoint
% value of UO.

U
t

exp (-xmid."2);
0;

% Loop until t > tfinal
while (t < tfinal),

Ubc = [U(Nx), U, U(1)]; % This enforces the periodic bc
% Calculate the flux at each interface

F = 0.5% u *(Ubc(2:Nx+2) + Ubc(1:Nx+1))
- 0.5%abs(u)*(Ubc(2:Nx+2) - Ubc(1l:Nx+1));

7.3. FINITE VOLUME METHOD FOR CONVECTION

% Calculate residual in each cell
R = F(2:Nx+1) - F(1:Nx);

% Forward Euler step
U =10 - (dt/dx)*R;

% Increment time
t =1t + dt;

% Plot current solution
stairs(x,[U, U(QNx)]);
axis([xL, xR, -0.5, 1.5]);
grid on;

drawnow;

end

7.3.2 Two-Dimensional Convection

63

The finite volume discretization can be extended to two-dimensional problems. Suppose the
physical domain is divided into a set of triangular control volumes, as shown in Figure 7.5.

Application of Equation 7.1 to control volume A gives,

2

Figure 7.5: Triangular mesh and notation for finite volume method.

d
@ A H(U.7) ds =
dt/QAUd + [, HU.) ds /

Q4

S(U,t) dA,

(7.14)

64 LECTURE 7. FINITE VOLUME METHOD

where H (U, i) is the flux normal to the face,

H(U,) = [F(U)i + GU)j] - 7. (7.15)
As in the one-dimensional case, we define the cell average,
Uy = 1 UdA
A= AA Qu)

where A, is the area of control volume A. Thus, Equation 7.14 becomes,

dU 4
LA [HWU R ds:/ S(U, 1) dA.
A dt 004 () Q4 ()
In the case of convection, we again assume S = 0. Also, we expand the surface integral into
the contributions for the three edges,
dU A 2 3 1
AAW + / H(U, ﬁAB) ds + / H(U, ﬁAC) ds + / H(U, ﬁAD) ds = 0,
1 2 3

where 71 45 is the unit normal pointing from cell A to cell B, and similarly for 7 4c and 7 4p.

As in one-dimensional case, we assume that the solution everywhere in the control volume
is equal to the cell average value. Finally, the flux at each interface is determined by the
‘upwind’ value using the velocity component normal to the face. For example, at the interface
between cell A and B,

. - . 1, 1.,
H(U,7iag) = H(U4,Up,Tiag) = JUaB *Tiap (Up+Uy) — E‘UAB -fiag| (Up —Uys), (7.16)

where i 45 is the velocity between the control volumes. Thus, when @45 - iap > 0, the flux
is determined by the state from cell A, i.e. Uy. Likewise, when @ - iag < 0, the flux is
determined by the state from cell B, i.e. Ug. The velocity, @4p is usually approximated as
the velocity at the midpoint of the edge (note: @ can be a function of # in two-dimensions
even though the velocity is assumed to be divergence free, i.e. du/dz 4+ 0v/dy = 0). We use
the notation H to indicate that the flux is an approximation to the true flux when 4 is not
constant. Thus, the finite volume algorith prior to time discretization would be given by,
dU 4

AAW + fAI(UA, U, Tiap)Asap + ﬁ(UA, Uc, ftac)Asac + ﬁ(UA’ Up,fiap)Asap = 0.

The final step is to integrate in time. As in the one-dimensional case, we might use a
forward Euler algorithm which would result in the final fully discrete finite volume method,

n+1 n
AUA — Ui

A At

+ H(UR, UR, fiag)Asap + HUL, UL fiac) Asac + HUL,UB, fiap)Asap = 0.
(7.17)

Example 7.5 (Finite Volume Method for 2-D Convection on a Rectangular Mesh)
The following Matlab script solves the two-dimensional convection equation using a two-
dimensional finite volume algorithm on rectangular cells. The algorithm is the extension of
Equation 7.17 from triangular to rectangular cells. The problem is assumed to be periodic
and have a constant velocity.

7.3. FINITE VOLUME METHOD FOR CONVECTION

% Script: convect2d.m

close all;
clear all;

% Specify x range and number of points
x0 = -2;
x1 = 2;
Nx = 40;

% Specify y range and number of points

yo = -2;
yl = 2;
Ny = 40;

% Construct mesh

X = linspace(x0,x1,Nx+1);
y linspace(y0,y1,Ny+1);
[xg,yg]l = ndgrid(x,y);

% Construct mesh needed for plotting
xp = zeros(4,Nx*Ny) ;
yp = zeros(4,NxxNy) ;

n =0;
for j = 1:Ny,
for i = 1:Nx,
n=n+1,;

xp(1,n) = x(i);
yp(1,n) = y(j);

xp(2,n) = x(i+1);
yp(2,n) = y(j);

xp(3,n) = x(i+1);
yp(3,n) = y(j+1);

xp(4,n) = x(i);
yp(4,n) = y(j+1);

end
end

% Calculate midpoint values in each control volume

65

66 LECTURE 7. FINITE VOLUME METHOD

0.5%(x(1:Nx) + x(2:Nx+1));
0.5%(y(1:Ny) + y(2:Ny+1));

xmid
ymid

[xmidg,ymidg] = ndgrid(xmid,ymid);

% Calculate cell size in control volumes (assumed equal)

dx = x(2) - x(1);
dy = y(2) - y(1);
A = dxxdy;

% Set velocity
u-=1;
v=1;

% Set final time
tfinal = 10;

% Set timestep
CFL = 1.0;
dt = CFL/(abs(u)/dx + abs(v)/dy);

% Set initial condition to U0 = exp(-x~"2 - 20%*y~2)

% Note: technically, we should average the initial

% distribution in each cell but I chose to just set

% the value of U in each control volume to the midpoint
% value of UO.

U = exp(-xmidg."2 - 20*ymidg."2);

t = 0;

% Loop until t > tfinal
while (t < tfinal),

% The following implement the bc’s by creating a larger array

% for U and putting the appropriate values in the first and last
% columns or rows to set the correct bc’s

Ubc(2:Nx+1,2:Ny+1) = U; % Copy U into Ubc

Ubc (1,2:Ny+1) U(Nx, :); % Periodic bc

Ubc (Nx+2,2:Ny+1) U(1, :); % Periodic bc

Ubc(2:Nx+1, 1) = U(:,Ny); % Periodic bc

Ubc(2:Nx+1,Ny+2) U(:, 1); % Periodic bc

% Calculate the flux at each interface

7.4. EXTENSIONS OF THE FINITE VOLUME METHOD 67

% First the i interfaces
F= 0.5% u *(Ubc(2:Nx+2,2:Ny+1) + Ubc(1:Nx+1,2:Ny+1))
- 0.5%abs(u)*(Ubc(2:Nx+2,2:Ny+1) - Ubc(1:Nx+1,2:Ny+1));

% Now the j interfaces
G= 0.5% v *(Ubc(2:Nx+1,2:Ny+2) + Ubc(2:Nx+1,1:Ny+1))
- 0.5*abs(v)*(Ubc(2:Nx+1,2:Ny+2) - Ubc(2:Nx+1,1:Ny+1));

% Add contributions to residuals from fluxes
R = (F(2:Nx+1,:) - F(1:Nx,:))*dy + (G(:,2:Ny+1) - G(:,1:Ny))x*dx;

% Forward Euler step
U =10 - (dt/A)*R;

% Increment time
t =t + dt;

% Plot current solution
Up = reshape(U,1,Nx*Ny);
clf;

[Hp]l = patch(xp,yp,Up);
set (Hp, ’EdgeAlpha’,0);
axis(’equal’);
caxis([0,11);

colorbar;

drawnow;

end

7.4 Extensions of the Finite Volume Method

7.4.1 Nonlinear Systems

The basic finite volume approach can be extended to nonlinear systems of equations such as
the Euler equations (see Example 7.2). The main issue in this extension is how to calculate
an upwind flux when there is a system of equations. In one dimension, the basic finite volume
discretization remains the same as given by Equation 7.13,

yrtt — gn

The flux, however, must upwind (to some degree) all of the states in the equation. One
relatively simple way in which this can be done is using what is known as the local Lax-

68 LECTURE 7. FINITE VOLUME METHOD
Friedrichs flux. In this case, the flux is given by,

1 1
Fi (Ui, Uin) = 5 [F(Uir1) + F(Ui)] = 5 8max Uirs = Vi), (7.18)

1
2

where smax is the maximum speed of propagation of any small disturbance for either state
Ui or Ui—l—l-

Example 7.6 (Lax-Friedrichs Flux for 1-D Euler Equations) For the one-dimensional
Euler equations, there are three equations which are approrimated, i.e. conservation of mass,
conservation of x-momentum, and conservation of energy. A small perturbation analysis can
be performed which shows that the three speeds of propagation for this set of equations are u,
u—a, and u—+a where u is the flow velocity and a is the speed of sound. Thus, the mazimum
speed will always be |u| + a and the corresponding value of smax for the Laz-Friedrichs fluz
18,
Smax = Max (‘U,|Z + a;, ‘U‘H—l + a'i—|—1) .

7.4.2 Higher-order Accuracy

The extension to higher-order accuracy will be discussed in class.

Lecture 8

Finite Difference Methods for
Convection-Diffusion

In this lecture, we introduce the finite difference method for the solution of PDE’s. We will
limit our discussion of PDE’s to convection-diffusion. Recall from Equation 7.6 that the
convection equation is,

ou oUu oUu

E + U% + U% =
where U is the scalar quantity which is convected. Adding diffusion to this equation gives
the convection-diffusion equation,

at Vor "oy "M\ oz T B2)

0,

(8.1)

where p is the diffusion coefficient.

8.1 Finite Difference Approximations

The finite difference approximation of a PDE is constructed using a grid over the domain
of interest. The finite difference approximations are easiest to derive using a structured,
rectangular as shown in Figure 8.1. For a finite difference approximation of a PDE, the
solution is sought at the nodes of the mesh. We use the notation that U; ; is the value of U
at the (7, 7) node.

A common finite difference approximation of OU /Jz at node (i, j) is,

1
' I égmUi’j = m (Ui+1,j - Ui—l,j) . (82)

1,J

8_U
0z

The finite difference operator &9, is called a central difference operator. Finite difference
approximations can also be one-sided. For example, a backward difference approximation is,

ou

ox

1

Ui,j - Ui—l,j) ’ (83)

1,

69

70 LECTURE 8. FINITE VOLUME METHOD

j+1e 'S 'y 'y Az °
Ay
j e ® ® ® ®
j—1e ® ® ® ®
)
j—2e ® ® ® °
1—2 1—1 1 1+1 1+ 2

Figure 8.1: Two-dimensional structured mesh for finite difference approximations.

and a forward difference approximation is,

oUu
—| ~iU, =
ax T s

1

A—x (Ui+1,j - Ui,j)) (8'4)

i’j
A very common finite difference approximation for a second derivative is,

0*U

012

1
~ 55Uz = (Ui+1,j — 2Ui,j + Ui—l,j) . (85)

o I = Ag?
i,j

As in the first derivative case, since this derivative approximation uses both i & 1 values, it
is known as a central difference approximation of the second derivative. This approximation
can be motivated by approximating the second derivatives as a difference of first derivatives,

0?U . 0U/oz(z + Az/2) — 0U /0x(x — Ax/2)
a2 @ = A, Az
_ 1 [U(z+Az)-U(z) U(z)—U(z— Az)
T A0 Az Ax Ax
— lim — [U(z + Az) — 2U(2) + U(x — Az)].

Az—0 Ag2

To approximate the convection-diffusion equation we can combine various finite difference
derivative approximations. For example, consider the one-dimensional convection-diffusion
equation,

ou ou 0’U
Approximating this using central differences for all derivatives, the convection-diffusion equa-
tion at node ¢ can be approximated as,

(8.6)

du;
dt

8.1. FINITE DIFFERENCE APPROXIMATIONS 71

This is an ordinary differential equation for U; which is coupled to the nodal values at U;.
To make this a fully discrete approximation, we need to discretize in time. To do this, we
could apply any of the ODE integration methods that we discussed previously. For example,
the simple forward Euler integration method would give,

urtt _pyn
— o Ul UF = pU} (8.8)

This method is widely known as a Forward Time-Central Space (FTCS) approximation.

In finite differences, we often make use of the spatial stencil of a discretization. The
spatial stencil is simply the subset of nodes which are used to discretize the problem in space.
The central difference approximation in Equation 8.7 gives a three-point spatial stencil since
dU/dt at node i depends on three nodal values of U (including itself), specifically U;_4, U;
and U; ;. To illustrate this, note that Equation (8.7) can be written as,

dU;
dtl =a;—1Ui—1 + a;U; + a;11Us 1
where
o H
-1 = 9Ag + Az?’
a; = —QL
' Ax?’
W K
i+l = oA * Az?’

We can also place all of the nodal states into a vector,
U= (Uy,Us, ..., Ui, U, Uss1, -, Un,—1,Un,) "

where N, is the total number of points in the z-direction. Then, the finite difference ap-
proximation of convection-diffusion can be written in the following form,

aUu
—=AU+b 8.9
where b will contain boundary condition related data (boundary conditions are discussed in

Section 8.2) and the matrix A is,

Ay A A ... Aln,

Asp Ago Assz ... Agn,
A=]]] .)

Anzg Any2 Ang3z oo ANgN,

Note that row ¢ of this matrix contains the coefficients of the nodal values for the ODE
governing node ¢. Except for rows requiring boundary condition data, the values of A, ; are
related to the coefficients a;+; and a;, specifically,

Ai,i—l = Qj—1, Ai,i = Gy, Ai,i—|—1 = 441,

and all other entries in row 7 are zero.

72 LECTURE 8. FINITE VOLUME METHOD

In-class Discussion 8.1 (Finite Volume vs. Finite Difference Discretizations)

8.2 Boundary Conditions

In this section, we discuss the implementation of finite difference methods at boundaries.
This discussion is not meant to be comprehensive, as the issues are many and often subtle.
In particular, we only focus on Dirichlet boundary conditions.

A Dirichlet boundary condition is one in which the state is specified at the boundary.
For example, in a heat transfer problem, the temperature might be known at the boundary.
Dirichlet boundary conditions can be implemented in a relatively straightforward manner.
For example, suppose that we are solving a one-dimensional convection-diffusion problem
and we want the value of U at i = 1, to be Ujpet,

Ul = Uinlet .

To implement this, we fix U; = Uyy,;; and apply the finite difference discretization only over
the interior of the computational domain accounting for the known value of U; at any place
where the interior discretization depends on it. For example, at the first interior node (i.e.
i = 2), the central difference discretization of 1-D convection-diffusion gives,
dUs Us - U, Us — 2U, + U,
2 = .

& T2 oAy TP AL?

Accounting for the known value of Uy, this becomes,
dl, tu Us = Uiniet _ Us = 2U + Ulniet
dt > 2Ax a Ax? ’

In terms of the vector notation, when a Dirichlet boundary condition is applied we usually
remove that state from the vector U. So, in the situation where U; is known, the state vector
is defined as,

(8.10)

U= (U27 U37) Ui*la Uia Ui—|—la SR Uwala UNQC)T’
The b vector then will contain the contributions from the known boundary values. For
example, by re-arranging Equation (8.10), the first row of b contains,

Uinlet Uinlet

b, = }
! u22A:r +MA:UQ

8.2. BOUNDARY CONDITIONS 73

Since U;pier does not enter any of the other node’s stencils, the remaining rows of b will be
zero (unless the are altered by the other boundary). Note, the first row of A is,

u uy
P Ao = — el
Ax?’ 1.2 2Ax + Ax?’

Ay =2
and A; ; =0 for j > 2.

Example 8.1 (Finite Difference Method applied to 1-D Convection) In this exam-
ple, we solve 1-D convection,

oUu n uaU 0
ot ox
using a central difference spatial approximation with a forward Euler time integration,
yrtt —yn
thZ + w00, U = 0.

Note: this approzimation is the Forward Time-Central Space method from Equation (8.8)
with the diffusion terms remowved.
We will solve a problem that is nearly the same as that in Example 7.4. Specifically, the
initial condition s
Up(z) = ™.
We let the velocity, w = 1. Instead of solving a problem with periodicity, we enforce the
inflow boundary (which is at x = x, since u > 0),

2

U(t,zp) = e "r.

At the outflow, since u > 0, no boundary condition is needed at x = xg (i.e. the scalar just
convects out the domain at this location). But, the central difference discretization cannot
be applied at the outlet node (i.e. at i = N,) because it would require the N, + 1 nodal value
(which does not exist). To handle this problem, we switch the discretization at i = Ny to a
one-sided backwards difference formula.

A Matlab script that implements this algorithm is:

% This Matlab script solves the one-dimensional convection

% equation using a finite difference algorithm. The

% discretization uses central differences in space and forward

% Euler in time. An inflow bc is set and at the outflow a

% one-sided (backwards) difference is used. The initial condition
% is a Gaussian distribution.

b
clear all;
% Set-up grid

xL = -4;
xR = 4;

74 LECTURE 8. FINITE VOLUME METHOD

x = 51; % number of control volumes
x = linspace(xL,xR,Nx);

% Calculate cell size in control volumes (assumed equal)
dx = x(2) - x(1);

% Set velocity
u=1;

% Set final time
tfinal = 100;

% Set timestep
CFL = 0.1;
dt = CFLxdx/abs(u);

% Set initial condition
U = exp(-x.72);
t = 0;

% Set bc state at left (assumes u>0)
UL = exp(-xL~2);

% Loop until t > tfinal
while (t < tfinal),

% Copy old state vector
U0 = U;

% Inflow boundary
U(1) = UL;

% Interior nodes
for i = 2:Nx-1,

U(i) = U0(i) - dt*ux(U0(i+1)-U0(i-1))/(2xdx);
end

% Outflow boundary uses backward difference
i = Nx;
U(i) = U0(i) - dt*ux(U0(i)-U0(i-1))/(dx);

% Increment time
t =t + dt;

8.3. TRUNCATION ERROR ANALYSIS 75

% Plot current solution
plot(x,U,’*?);

xlabel(’x’); ylabel(’U’);
title(sprintf(’time = %f\n’,t));
axis([xL, xR, -0.5, 1.5]);

grid on;

drawnow;

end

When this method is run, the initial Gaussian disturbance convects out the domain, how-
ever small oscillations are observed which start at the outlet and move upstream (i.e. to
the left). FEventually, these oscillations grow until the entire solution is contaminated. In
Lecture 9 we will show that the FTCS algorithm is unstable for any At for pure convection.
Thus, what we are observing is an instability that can be predicted through some analysis.

8.3 Truncation Error Analysis

In the discussion of ODE integration, we used the ideas of consistency and stability to prove
convergence through the Dahlquist Equivalence Theorem. Similar concepts also exist for
PDE discretizations, however, we cannot cover these here. We will briefly look at the local
truncation error for finite difference approximations of derivatives, and as well the governing
partial differential equations.

8.3.1 Truncation Error for a Derivative Approximation
Suppose we use a backwards difference, d; U; to approximate the first derivative, U, at point

1. The local truncation error for this derivative approximation can be calculated using Taylor
series as we have done in the past:

T = 5;U1—Um,

1
= A—x(Ui_Ui—l)_Uwia
_ Ly (- 1.2 3)]_
- v (U, AaUpi+ S A8 Uy + O(A))| - U,

1
= —§AxUm,~ + O(Ax?).

Thus, the analysis shows that the backwards difference is a first-order accurate discretization
of the derivative at node 1.

76 LECTURE 8. FINITE VOLUME METHOD

In-class Discussion 8.2 (Central difference approximation of U,;)

In-class Discussion 8.3 (Central difference approximation of U,,;)

8.3.2 Truncation Error for a PDE

Similar to the ODE case, the truncation error is defined as the remainder after an exact
solution to the governing equation is substituted into the finite difference approximation.
For example, suppose we are using the FTCS algorithm in Equation (8.8) to approximate
the one-dimensional convection-diffusion equation. Then the local truncation error for the
PDE approximation is defined as,

yrtl — pn

e

T

where U(z,t) is an exact solution to Equation (8.6). Note that the truncation error defined
here for PDE’s is not quite a direct analogy with the standard definition of local truncation
error used in ODE integration, specifically in Equation (2.2). In particular, in the ODE
case, the truncation error is defined as the difference between the numerical solution and the
exact solution after one step of the method (starting from exact values). However, in the
PDE case, we have defined the truncation error as the remainder after an exact solution is
substituted into the numerical method when the numerical method is written in a form that
approximates the governing PDE.

Except for this difference in the definition, the calculation of the local truncation follows
the same procedure as in the ODE case in which Taylor series substitutions are used to

8.3. TRUNCATION ERROR ANALYSIS 7

expand the error in powers of At. Continuing on with our example, we use Taylor series of
U about t = t" and x = z;. However, we can use our previous results from the analysis of the
truncation error of spatial derivatives. Specifically, we showed in during in-class discussions
that,

1
1

Using these results,

_urt-up
o At

1 1
. ol | U+ S AT U + O(Am‘*)] _u [Um;‘ AT Uy + O(AT)

Then, performing a similar Taylor series of the time derivative approximation gives,

Un—l—l _pyn

1
= U™ + - AtU,™ + O(A?).
At v 2 u" +O(AL)
Substituting this into 7 and collecting terms in powers of At and Az gives,

T = Uy +ujUy + — Uz +
1
§AtUtt? + O(A¥) +

éAmzu?Umw? — %A:vQ,uUmm? + O(Az")
The first line of thie equation is actually just the PDE, evaluated at ¢t = t" and z = z;.
Since U is an exact solution to the PDE, this is zero. The second line shows that the time
discretization introduces an O(At). The third line shows that the spatial discretization
introduces an O(Axz?) error. Thus, this numerical method is first-order accurate in time and
second-order accurate in space.

78

LECTURE 8. FINITE VOLUME METHOD

Lecture 9

Matrix Stability Analysis of Finite
Difference Methods

In this lecture, we analyze the stability of PDE discretizations using a matrix approach.
This method builds upon our understanding of eigenvalue stability for systems of ODE’s.
As we saw in Section 8.1, finite difference (or finite volume) approximations can poten-
tially be written in a semi-discrete form as,
dUu
e AU +b. (9.1
While there are some PDE discretization methods that cannot be written in that form, the
majority can be. So, we will take the semi-discrete Equation (9.1) as our starting point.
Note: the term semi-discrete is used to signify that the PDE has only been discretized in
space.
Let U(t) be the exact solution to the semi-discrete equation. Then, consider perturbation
e(t) to the exact solution such that the perturbed solution, V' (¢), is:

V(t) = U(t) +e(t).

The questions that we wish to resolve are: (1) can the perturbation e(t) grow in time for
the semi-discrete problem, and (2) what the stability limits are on the timestep for a chosen
time integration method.

First, we substitute V' (¢) into Equation (9.1),

av

= = AV +b
7 V+
M — A(U+€)+b
dt
de
— = Ae.
dt ¢

Thus, the perturbation must satisfy the homogeneous equation, e; = Ae. Having studied the
behavior of linear system of equations in Section 4.2, we know that e(¢) will grow unbounded
as t — oo if the real parts of the eigenvalues of A are positive.

79

80 LECTURE 9. MATRIX STABILITY

The problem is that determining the eigenvalues of A can be non-trivial. In fact, for a
general problem finding the eigenvalues of A can be about as hard as solving the specific
problem. So, while the matrix stability method is quite general, it can also require a lot of
time to perform. Still, the matrix stability method is an indispensible part of the numerical
analysis toolkit.

As we saw in the eigenvalue analysis of ODE integration methods, the integration method
must be stable for all eigenvalues of the given problem. One manner that we can determine
whether the integrator is stable is by plotting the eigenvalues scaled by the timestep in the
complex AAt plane and overlaying the stability region for the desired ODE integrator. In
fact, we have already plotted the eigenvalues for one-dimensional diffusion using a central
difference discretization in Example 5.1. Then, At can be adjusted to attempt to bring all
eigenvalues into the stability region for the desired ODE integrator.

Example 9.1 (Matrix Stability of FTCS for 1-d convection) In Ezample 8.1, we used
a forward time, central space (FTCS) discretization for 1-d convection,

ntl _ pjn

Since this method is explicit, the matriz A does not need to be constructed directly, rather
Equation (9.2) can be used to find the new values of U at each point i. The Matlab script
given in Example 8.1 does exactly that. However, if we are interested in calculating the
eigenvalues to analyze the eigenvalue stability, then the A matriz is required. The following
script does ezactly that (i.e. calculates A, determines the eigenvalues of A, and then plots
the eigenvalues scaled by At overlayed with the forward Euler stability region). The script
can set either the inflow/outflow boundary conditions described in Example 8.1, or can set
periodic boundary conditions. We will look at the eigenvalues of both cases.

% This Matlab script calculates the eigenvalues of

% the one-dimensional convection equation discretized by
% finite differences. The discretization uses central

% differences in space and forward Euler in time.

h

% Periodic bcs are set if periodic_flag ==

h

% Otherwise, an inflow (dirichlet) bc is set and at

% the outflow a one-sided (backwards) difference is used.

b

clear all;
periodic_flag = 1;
% Set-up grid

xL = -4;
xR = 4;

Nx = 21; % number of points
x = linspace(xL,xR,Nx);

% Calculate cell size in control volumes (assumed equal)
dx = x(2) - x(1);

% Set velocity
u=1;

% Set timestep
CFL = 1;
dt = CFL*dx/abs(u);

% Set bc state at left (assumes u>0)
UL = exp(-xL"2);

% Allocate matrix to hold stiffness matrix (A).
%
A = zeros(Nx-1,Nx-1);

% Construct A except for first and last row
for i = 2:Nx-2,

A(i,i-1) = u/(2*xdx);
A(i,i+1) = -u/(2*dx);
end

if (periodic_flag == 1), % Periodic bcs

Al ,2) = -u/(2%xdx);
A1 ,Nx-1) = u/(2xdx);
A(Nx-1,1) = -u/(2%dx);
A(Nx-1,Nx-2) = u/(2%dx);

else % non-periodic bc’s

% At the first interior node, the i-1 value is known (UL).
% So, only the i+l location needs to be set in A.
A(1,2) = -u/(2%dx);

% Outflow boundary uses backward difference
A(Nx-1,Nx-2) = u/dx;
A(Nx-1,Nx-1) = -u/dx;

end

82 LECTURE 9. MATRIX STABILITY

% Calculate eigenvalues of A
lambda = eig(A);

% Plot lambdaxdt
plot(lambda*dt,’*’);
xlabel(’Real \lambda\Delta t’);
ylabel(’Imag \lambda\Delta t’);

% Overlay Forward Euler stability region
th = linspace(0,2*pi,101);

hold on;

plot(-1 + sin(th),cos(th));

hold off;

axis(’equal’);

grid on;

Figure 9.1 shows a plot of AAt for a CFL set to one. Recall that for this one-dimensional
problem, the CFL number was defined as,

|u| At
AV

In the inflow/outflow boundary condition case (shown in Figure 9.1) the eigenvalues lay
slightly inside the negative real half-plane. As they move away from the origin, they approach
the tmaginary axis at +i. The periodic boundary conditions give purely imaginary eigenvalues
but these also approach +i as the move away from the origin. Note that the periodic boundary
conditions actually give a zero eigenvalue so that the matriz A is actually singular (Why is
this?). Regardless what we see is that for a CFL = 1, some \At exist which are outside of
the forward Euler stability region. We could try to lower the timestep to bring all of the AAt
into the stability region, however that will prove to be practically tmpossible since the extreme
eigenvalues approach +i (i.e. they are purely imaginary). Thus, no finite value of At exists
for which these eigenvalues can be brought inside the circular stability region of the forward
FEuler method (i.e. the FTCS is unstable for convection).

CFL =

In-class Discussion 9.1 (Behavior of FTCS eigenvalues with decreased Az) We will
discuss Figure 9.2.

83

08 08

06 06
0.4 0.4

0.2r- 02r-

Imag AA t
)
Imag AA t
)

-0.2r -0.2r-

—04f -0.4F
~0.61 ~0.6F

0.8 0.8

L L L L
-2 -1.5 1 -05

I
*
*
*
*
*
*
*
*
*
*
*)
*
*
*
*
*
3
= 0
Real At

L L L L
-2 -15 -1 -0.5 0
Real 1At

(a) Dirichlet inflow and upwinded outflow (b) Periodic boundary conditions

Figure 9.1: AAt distribution for one-dimensional convection example using two different
boundary conditions. Note: At set such that CFL = 1.

In-class Discussion 9.2 (Behavior of FTCS eigenvalues with diffusion) We will dis-
cuss Figure 9.3.

Though the eigenvalues of A typically require numerical techniques for the general prob-
lem, a special case of practical interest occurs when the matrix is ‘periodic’. That is, the
column entries shift a column every row. Thus, the matrix has the form,

a; ag az ... an

ay a1 Qa2 ... GN_—1
A= o

o a3z Qa4 ... aq

This type of matrix is known as a circulant matrix. Circulant matrices have eigenvalues
given by,

N
Ao = a;et?™0-U% for n=0,1,...,N—1 (9.3)
j=1

84 LECTURE 9. MATRIX STABILITY

08 08

06 06
0.4 0.4

02+ 02k

Imag AA t
)

Imag AA t
)

-0.2F -0.2r-

—04f -0.4F
~0.61 ~0.6F

0.8 0.8

L L L L
-2 -1.5 1 -05

L L L L
- -2 -15 1 -0.5
Real AA t

Real 1At

(a) Az =04 (b) Az =0.04

Figure 9.2: Effect of Az on AAt distribution for one-dimensional convection example using
Dirichlet inflow and upwinded outflow conditions. Note: At set such that CFL = 1.

Example 9.2 As we saw in Example 9.1, when periodic boundary conditions are assumed,
the central space discretization of one-dimensional convection gives purely imaginary eigen-
values, and when scaled by a timestep for which the CFL number is one, the eigenvalues
stretch along the axis until £i. Since for a convection problem with constant velocity and pe-
riodic boundary conditions gives a circulant matriz, we can use Equation (9.3) to determine
the eigenvalues analytically. We begin by finding the coefficients, a;. For a central space
discretization, we find,

u u

- a _
2Az’ N T 2Az’
Then, substituting these a; into Equation (9.3) gives,

ay = — and for all other j, a; = 0.

u Co,_ M u . 1\~
)\n — __6127TN+_61277(N l)N’
20z 2Ax
- _ ez?wN+ ezZrne 227rN.

2Azx 2Azx

12t — 1 (because n is an integer), then,

Since e

o ion
)\n - _ ezQﬂN+ e 127 &

Multiplying by the timestep,

85

08

06

0.4r-

05r
0.2F

Imag AA t
)

Imag AA t
=]

0.2

-05F
~0.4F

-06r

0.8

L L L L L L L) L) |
-2 -1.5 -1 -0.5 0 -4 -35 -3 -25 -2 -1.5 -1 -05 0
Real AA t Real 2A t

(a) uAz/p =100 (b) vAz/p=1

Figure 9.3: Effect of viscosity on AAt distribution for one-dimensional convection-diffusion
example using periodic boundary conditions.Note: At set such that CFL = 1.

As observed in Example 9.1, the eigenvalues are purely imaginary and will extend to =i when
CFL = |u|At/Ax = 1.

86

LECTURE 9. MATRIX STABILITY

Lecture 10

Fourier Analysis of Finite Difference
Methods

In this lecture, we determine the stability of PDE discretizations using Fourier analysis.
First, we begin with Fourier analysis of PDE’s, and then extend these ideas to finite difference
methods.

10.1 Fourier Analysis of PDE’s

We will develop Fourier analysis in one dimension. The basic ideas extend easily to multiple
dimensions. We will consider the convection-diffusion equation,

oU oUu o*U

—— tu—=p—.
ot or " ox2
We will assume that the velocity, u, and the viscosity, p are constant.
The solution is assumed to be periodic over a length L. Thus,

U(x+mL,t) =Ul(z,t)

where m is any integer. As we saw in Lecture 9, as the mesh is refined, the eigenvalues of the
systems with general boundary conditions tend to approach the eigenvalues of the periodic
case. Thus, we expect this periodicity assumption to still lead to insight into more general
boundary conditions especially as the mesh is refined.

A Fourier series with periodicity over length L is given by,

+oo] D)
U, t)= Y Un(t)e** where by = WTm (10.1)

k., is generally called the wavenumber, though m is the number of waves occurring over the
length L. We note that U,,(t) is the amplitude of the m-th wavenumber and it is generally
complex (since we have used complex exponentials). Substituting the Fourier series into the
convection-diffusion equation gives,

“+o00

% l io Um(t)eikm“] +u(%l io Um(t)e“kmzl =y l 3 Um(t)eikm‘”] .

m=—00 m=—0o0

87

88 LECTURE 10. FOURIER ANALYSIS

too g1 +00 . Too N
oo =Rt 4w Y ik, Une®™ = Y (k) Une™”.
m=—00 dt m=—00 m=—00
Noting the 2 = —1 and collecting terms gives,
= TdU. ~
> l—m + (iukm + ukfn) Um] etkm® — (), (10.2)
m=—00 dt

The next step is to utilize the orthogonality of the different Fourier modes over the length

L, specifically,
LN 0 ifm#n
itknx tkmx __
/06 € _{L ifm=n (10.3)

By multiplying Equation (10.2) by e *=® and integrating from 0 to L, the orthogonality
condition gives,

dUn . 2 i .

a + (wkn + ,ukn) U, =0, for any integer value of n. (10.4)
Thus, the evolution of the amplitude for an individual wavenumber is independent of the
other wavenumbers. The solution to Equation (10.4),

A

Un(t) = Un(O)e_i“k"te_“k%t.

The convection term, which results in the complex time dependent behavior, e~##=¢ only
oscillates and does not change the magnitude of U,. The diffusion term causes the magnitude
to decrease as long as u > 0. But, if the diffusion coefficient were negative, then the
magnitude would increase unbounded with time. Thus, in the case of the convection-diffusion
PDE, as long as p > 0, this solution is stable.

10.2 Semi-Discrete Fourier Analysis

Now we move on to Fourier analysis of a semi-discrete equation. That is, we discretize in
space but not time. To be specific and simple, let consider pure convection discretized with
central differences. This is exactly the case considered in Example 9.2 so we already know
the results. But here, we derive the eigenvalues of the central difference discretization using
Fourer analysis. The semi-discrete equation is,

dU; dU;
—]‘f‘U(SQij:O, = d—;ﬁ‘ﬁ(

dt
Note that we have switched our indices from the usual #’s to j’s to avoid confusion in this
discussion because the Fourier series we are about to introduce will give rise to the imaginary
number, 7.
For the analysis of PDE’s, a Fourier series of infinite dimension was used (i.e. m ranged
from +o0 in Equation (10.1)). In that case, the infinite number of terms in the Fourier series
corresponds to the fact that there are infinitely many values of U over the periodic domain

Ujpr —Uj_1) = 0. (10.5)

10.2. SEMI-DISCRETE FOURIER ANALYSIS 89

(because the space from 0 < z < L has an infinite number of points). In the semi-discrete
case, only a finite number of values exist over the periodic domain. Specifically, if there are
N equally-spaced nodes in the domain, then there will be N — 1 unique values (because
the values at the beginning and end of the domain must be the same due to periodicity).
Summarizing, there can only be N — 1 terms in the Fourier series used to describe a finite
difference solution on a periodic domain with N points.

The most common set of N — 1 modes used to analyze finite difference schemes is,

N/2-1
Uit) = Y. Un(t)emise for even N, (10.6)
m=—N/2+1
and,
N-1/2
Uit) = > Un(t)e* 27 for odd N (10.7)
m=—(N-3)/2

Note that for large N, the limits on either Fourier series approach £N/2.

So what happens to the modes with higher wavenumbers? The answer is that the higher
wavenumbers are aliased with the lower wavenumber when fewed only at a finite number of
nodes. To demonstrate this, consider the case with N = 5 nodes. In this case, the values
of m in the Fourier series are from —1 to 2. The real and imaginary parts of the modes are
plotted in Figure 10.1 for m =0, 1, and 2. Although the mode shape is shown for all values
of x, the only values of concern are those at the nodes. We can already see the potential
for aliasing by looking at the imaginary part of the m = 2 mode. In this case, the nodal
values of this mode are all zero. Thus, at the nodes, the imaginary part of m = 2 mode is
identical to the imaginary part of the m = 0 mode (i.e. the are both zero at the nodes). The
m = 2 mode is not completely aliased with the m = 0 mode, however, because the real part
of the modes are different. Specifically, the real part of the m = 0 mode is constant (equal
to one at all nodes), while the real part of the m = 2 mode oscillates between +1. This +1
oscillation between nodes is often called an odd-even or a sawtooth mode. To demonstrate
what happens with higher wave numbers, Figure 10.2 shows the m = 3 mode, overlayed with
the m = —1 mode. As can be seen from this plot, these two modes are indistinguishable
from each other at the nodes.

If we proceed along the analogous lines to the Fourier analysis of PDE’s in the previous
section, we would substitute the Fourier series into Equation (10.5) and utilize a similar
orthogonality relationship to arrive at the conclusion that each mode of the Fourier series
behaves independently. Thus, from now on, we will simply substitute an individual mode
into the discrete equations. That is, we assume that

Uj(t) = Un(t)e*mide,

for a valid m. Substitution of this individual mode into Equation (10.5) gives,

dﬁm ikmjAz u ikm G+ AT _ikm(j-1)Az] 77 _
W@ + AL [e —e] U, =0.

90 LECTURE 10. FOURIER ANALYSIS

08t B 08l

0.6 B 0.6~

0.4 b 0.4~

02 m=1 B o2

'm
X
m

sink
N

cosk_x

_ L LN L L " L T N L _ L Nt |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.8 0.9 1
X

(a) Real et*m% = cos k,, (b) Imag e*=% = sin k,z

Figure 10.1: Plots of cos k,,x and sin k,,x for L = 1 including the nodal values for a five
node grid (Az = 0.2).

Factoring out the term e#m2% gives,

dUm u ikm Az —ikmAz] 7 _
7 +2Ax[e e]Um—().
dUm Lu . A
W + ZA—,Z‘ Sln(kmAI) Um = 0.

Thus, for each mode m we may write,

where

.U
Am = ~ins sin(k,, Az).

Comparing these)\, to the eigenvalues found in Example 9.2, we can show that they are
identical.
A parameter which occurs throughout Fourier analysis of spatial discretizations is,

By = kmAz. (10.8)
Since k,, = 2mm/L, then
8, =2 mAz
m — 4T L

Since [, varies with m, we can determine the range of 3, values corresponding to the range
of m values. In particular, for large N, the limiting values of m approach +N/2; thus the

10.2. SEMI-DISCRETE FOURIER ANALYSIS 91

- 0 0.‘1 0‘.2 0‘.3 0‘.4 0’."‘5 0.‘6 0.‘7 0‘.8 U‘.g 1
X
(a) Real et*m% = cos k,, (b) Imag e*=% = sin k,z

Figure 10.2: Demonstration of aliasing of an m = 3 mode to m = —1 for a five node grid.

limiting values of 3, will be,

NA NA N
hm B, = 4212 — 4722 g ——
m—+N/2 2L L N -1
N—oo

Thus, assuming large N, the eigenvalue calculation for any spatial differencing method re-
duces to:

1. Substitute U;(t) = Uy, (t)e¥P into the semi-discrete equation.
2. Determine the A, (8,,) such that %ffm =\,U,.

3. Determine the limitations on the timestep such that A, (8,,)At will be inside the
stability region for a chosen time integration method for all —7 < 3, < 7.

Example 10.1 (Analysis of a first-order upwind discretization of convection) In this
example, we perform a Fourier analysis of a first-order upwind discretization of convection.
Assuming the velocity is positive, then an upwind discretization of convection is,

— 0,U; =0 = —L 4+ —(U; —U;_;) = 0.
dt+uz] ’ dt+A$(] Jl)
Following the steps outlined above, we substitute the Fourier mode,
AU, iiBm o Y [iiBm _ Gi(=1)Bm] [
T + Az [e —e] Un = 0.
Factoring out the term e®*mi2% giyes,
dﬁm U

W‘FA—.T(l—eii’Bm)ﬁm:O.

92 LECTURE 10. FOURIER ANALYSIS

Thus,

uAt . uAt
—ifm\ _) Q1
AnAt = — - (1 e) = = (1 — cos B, +isin By,) .

The upwind approrimation gives both a real and imaginary part to the eigenvalue. In fact, the
imaginary part is identical to the central difference part. The real part is negative, thus the
upwind approximation adds stability (in the sense that a negative real eigenvalue corresponds
to amplitudes that decrease in time). A plot of the eigenvalues is shown in Figure 10.3 for
ulAt/Ax = 1. The Matlab script for generating these eigenvalue plots is given below:

bm = linspace(-pi,pi,21);
CFL = 1;
lamdt = -CFL*(1 - exp(-i*bm));

plot(lamdt,’*’);

xlabel(’Real \lambda\Delta t’);
ylabel(’Imag \lambda\Delta t’);
grid on;

axis(’equal’);

1 ¥
* *
0.8 * * 8
0.6 * * 8
0.4} .
* *
0.2 : : s
3
o or * % 4
©
E
-0.2 .
* *
-04f 4
—0.6 * *. -
-0.8[* * 1
-1 ! ! * % * ! !
-2 -15 -1 -0.5 0
Real AA t

Figure 10.3: A, At for a first-order upwind discretization of convection for CFL = uAt/Az =
1.

Lecture 11

Method of Weighted Residuals

In this lecture, we introduce the method of weighted residuals which provides the most
general formulation for the finite element method. To begin, let’s focus on the particular
problem of steady heat diffusion in a rod. This problem can be modeled as a one-dimensional
PDE for the temperature, 7"

(KT), = (11.1)

where k(z) thermal conductivity of the material and ¢(z) is the heat source (per unit area),
respectively. Note that both £ and ¢ could be functions of z. Also, let the physical domain
for the problem be from z = —L/2 to z = L/2.

Example 11.1 (Steady heat diffusion) Suppose that the rod has a length of L = 2, the
thermal conductivity is constant, k = 1, and the heat source, q(x) = 50e*. Assume that the
temperature at the ends of the rod are to be maintained at T(+£1) = 100. Equation (11.1)
can be integrated twice to obtain:

(k1) = —q,
T,e = —50e",
T, = —50€°+ a,
T = —=50e*+ax +b.

Now, applying boundary conditions so that T(£1) = 100,

—50e' +a+b = 100,
—50e' —a+b = 100.

This is a 2 x 2 system which can be solved for a and b,

a = 5H0sinhl
b = 100+ 50cosh1,

where coshy = (e¥ 4+ e7Y)/2 and sinhy = (e¥ — e7Y)/2. Thus, the exact solution is,
T = —50e” 4+ 50z sinh 1 4 100 + 50 cosh 1. (11.2)

A plot of this solution is shown in Figure 11.1.

93

94 LECTURE 11. METHOD OF WEIGHTED RESIDUALS

130 T T T T

120 : . i

11of v : 1

100 L L L 1 L L 1 1 1
-1

Figure 11.1: Temperature distribution for ¢ = 50e*, L =2, and k£ = 1.

A common approach to approximating the solution to a PDE such as heat diffusion is
to use a series of weighted functions. For example, for the temperature in Example 11.1 we
might assume that,

N
T(w) =100 + Z a;0;(x),
i=1

where N is the number of terms (functions) in the approximation, ¢;(x) are the (known)
functions, and a; are the unknown function weights. The functions ¢;(z) are usually designed
to satisfy the boundary conditions. So, in this example where the temperature is 100 at
z = +1, then ¢;(+1) = 0 (don’t forget that T was defined to include the constant term of
100).

The question remains what functions (and how many) to choose for ¢;(z). While many
good choices exist, we will use polynomials in x because polynomial approximations are used
extensively in finite element methods (our main interest). For this problem, the following
ideas can be used to determine the form of the ¢;(x):

e First, we note that requiring ¢;(+1) = 0 places two conditions on each ¢;(x). These
two conditions can be satisfied with a linear function of z, but the linear function
which equals 0 at x = £1 is simply 0. Since this does not add anything to the solution
even after multiplying by a weight, the first non-trivial function would be a quadratic
function.

e A quadratic function can be designed to satisy the boundary conditions in the following
manner,

o1(z) =1+ 2)(1 —z).

95

By including factors which go to zero at the end points, we have constructed a quadratic
function which will satisfy the required boundary conditions. A plot of ¢;(x) is shown
in Figure 11.2.

e Suppose we wanted to include a cubic polynomial in the approximation, then one way
we could do this is multiply ¢;(z) by z.

do(z) = 21 (z) = 2(1 + 2)(1 —).

Since ¢1(z) goes to zero at the end points, then so will ¢o(x). A plot of ¢o(x) is shown
in Figure 11.2. There are actually some better ways to choose these higher-order
polynomials then simply multiplying the lowest order polynomial by powers of z. The
problem with the current approach is that if the number of terms were large (so that
the powers of would be large), then the set of polynomials (i.e. ¢;(x)) become very
poorly conditioned resulting in many numerical difficulties. We will not discuss issues
of conditioning but more advanced texts on finite element methods or related subjects
can be consulted. For low order polynomial approximations, the issues of conditioning
do not play an important role.

Figure 11.2: ¢;(z) and ¢,(z) for example heat diffusion problem.

Having selected a set of functions, we must now develop a way to determine values of a;
that will lead to a good approximation of the actual T'(xz). While several ways exist to do
this, we will focus on two methods in these introductory notes: the collocation method and
the method of weighted residuals.

96 LECTURE 11. METHOD OF WEIGHTED RESIDUALS

11.1 The Collocation Method

One approach to determine the N values of a; would be to enforce the governing PDE at
N points. Note that in general, the exact solution will not be a linear combination of the
¢i(z), so it will not be possible to enforce the PDE at every point in the domains. To see
this, let’s substitute 7'(z) into Equation (11.1). Note that,

_ o2
Tow = 92 [a101(z) + azga ()],

(¢1)ww = _2a
(¢2 T — _6377
=T, = —2a; — 6aqx.

Next, we define a residual for Equation (11.1),
R(T,z) = (kTw)x +4q.

If the solution were exact, then the R = 0 for all z. Now, substitution of our chosen 7 into
the residual (recall £ = 1 and g = 50e® in this example) gives,

R(T, z) = —2a; — 6ayx + 50€”. (11.3)

Clearly, since a; and ay are constants (i.e. they do not depend on z), there is no way for
this residual to be zero for all x.

The question remains, where should the N points be selected. The points at which the
governing equation will be enforced are known as the collocation points. We will choose the
relatively simple approach of equally subdividing the domain with N = 2 interior collocation
points. For this domain from —1 < x < 1, the equi-distant collocation points would be at
x = +1/3. Thus, the two conditions for determining a; and a, are,

R(T,-1/3) = 0,
R(T,1/3) = 0.
From Equation (11.3) this gives,
—2aq + 209 + 5013 =
—2a; — 2a5 + 50eY? = 0.

Re-arranging this into a matrix form gives,

-2 2 a; \ [—50e"1/3
-2 =2 ay)~ \ =50et® |-
(@) 25cosh1/3 \ [26.402
az)\ 25sinh1/3 | 8.489 |-
The results using this collocation method are shown in Figure 11.3 which includes plots of
T, the error (i.e. T'— T), and the residual. Note that the residual is clearly exactly zero

at the collocation points (i.e. x = £1/3), though the approximation is not exact at these
points (i.e. T # T at z = £1/3).

11.2. THE METHOD OF WEIGHTED RESIDUALS 97

11.2 The Method of Weighted Residuals

While the collocation method enforces the residual to be zero at N points, the method of
weighted residuals requires N weighted integrals of the residual to be zero. A weighted
residual is simply the integral of a weight function, w(z) and the residual over the domain.
For example, in the one-dimensional diffusion problem we are considering, a weighted residual
is,

/1 w(z) R(T, z) dz.

-1
By choosing N weight functions, w;(z) for 1 < j < N and setting these N weighted residuals
to zero, we may determine N values of a;. We define the weighted residual for w;(z) to be,

Ry(T) = [" w;(@) R(T,) da.

-1
And, the method of weighted residuals requires,
Ri(T)=0 for1<j<N.

In the method of weighted residuals, the next step is to determine appropriate weight
functions. A common approach, known as the Galerkin method, is to set the weight functions
equal to the functions used to approximate the solution. That is,

wj(z) = ¢j(x). (Galerkin).
For the heat diffusion example we have been considering,

wi(z) = (1-z)(1+2),
wy(z) = z(1—2)(1+x).

Now, we must calculate the weighted residuals. For the example,
~ 1 ~
B(T) = [wi(e)R(T,z)ds,
-1

1
= / (1—2)(1+2z) (—2a; — 6asz + 50€°) dz,

-1

8
= —gu+ 200e".

To do this integral, the following results were used (the constants of integration are ne-
glected),

/(1—x)(1+x)d:1: = r-— %x?’,
_ 1, 1
/x(l—ﬁ)(l-i-x)dx = T =57

/:)32€“c de = z%e® — 2ze® + 26°.

98 LECTURE 11. METHOD OF WEIGHTED RESIDUALS

Similarly, calculating Ra:

RA(T) = [wle) RO,) dr,
= /1 z(1—2)(1 4+ z) (—2a; — 6aszx + 50€”) dux,

-1

8
= s+ 100e! — 1200e7 1,

where the following results have been used,
2 Ly 15
/33 l1—2)1+2z)dx = —z°— —z°,
3 5
/xew de = we® —é”,
/m3e‘” dr = %" — 3z%” + 62e” — 6e”.

Finally, we can solve for a; and ay by setting the weighted residuals R; and Rs to zero,

8
—3a+ 200e ! = 0,

8
—£a2 +100e' — 700e~t = 0.

This could be written as a 2 x 2 matrix equation and solved, but the equations are decoupled
and can be readily solved,

(@) 7he '\ [27.591
az)\ Bel -85t)] T\ 8945)¢
The results using this method of weighted residuals are shown in Figure 11.4. Comparison

with the collocation method results shows that the method of weighted residuals is clearly
more accurate.

11.2. THE METHOD OF WEIGHTED RESIDUALS

-1 -0.8 -0.6 -0.4 -0.2 0

(a) Comparison of T (solid) and T
(dashed)

Errorin T

Residual

(¢) Residual, R(T, z)

Figure 11.3: Results for collocation method.

99

100 LECTURE 11. METHOD OF WEIGHTED RESIDUALS

130

L L L L))) L L
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

(a) Comparison of T (solid) and T
(dashed)

(b) Error, T — T

(¢) Residual, R(T, z)

Figure 11.4: Results for method of weight residuals.

Lecture 12

The Finite Element Method for
One-Dimensional Diffusion

12.1 Motivation

In this lecture, we introduce the finite element method (FEM). In its most general form,
FEM is based on the method of weighted residuals. The application of the method of
weighted residuals as described in Lecture 11 becomes difficult when the complexity of the
problems increases, specifically in multiple dimensions and with varying properties (e.g.
varying thermal conductivity in the heat diffusion problem). The heart of the difficulty
in these applications is the construction of the weighted residual integrals. For the simple
one-dimensional problem discussed in Lecture 11, these integrals were relatively easy to
do, however, the analogous integrals in multiple dimensions with complex geometries are
very difficult to evaluate without some additional form of numerical approximation. For
example, consider the heat transfer problem shown in Figure 12.1 and imagine the difficulty
in constructing a set of functions which satisfy the boundary conditions and then integrating
the weighted residuals of these functions over the entire domain.

The finite element method offers one approach to approximating the solution and the
weighted residual integrals in general situations and, therefore, makes possible the approx-
imation of complex physical problems. The basic idea behind the finite element method is
to discretize the domain into small cells (called elements in FEM) and use these elements to
approximate the solution and evaluate the weighted residuals (an example mesh can be seen
in Figure 12.2). Typically, in each element, the solution is approximated using polynomial
functions. Then, the weighted residuals are evaluated an element at a time and the resulting
system of equations are solved to determine the weight coefficients on the polynomials in
each element.

To introduce the basic concepts of the finite element method, we will first discuss the
one-dimensional case. In future lectures, we will consider multiple dimensions and return to
this complex heat transfer problem.

101

102 LECTURE 12. FINITE ELEMENT METHOD

TO
Figure 12.1: Heat transfer problem in a complex domain. Temperature at outer boundary
is maintained at Ty. Temperature of all of the internal rectangles except one are maintained
at 77, while the remaining internal rectangle is maintained at 7T5.

Figure 12.2: Mesh for heat transfer problem in a complex domain.

12.2 1-D Finite Element Mesh and Notation

Consider a mesh of one-dimensional elements as shown in Figure 12.3. As shown in the
figure, element 7 is the region from z; < z < z;,;. Note, each element can have its own
length,

A.’L‘Z‘ = Titr1 — Tj-

12.3 1-D Linear Elements and the Nodal Basis

The finite element method typically uses polynomial functions inside each element. Further-
more, the approximation is usually required to be continuous from element to element. The
simplest element which permits continuous functions would be to assume linear variations of
x inside each element. This type of element is called a linear element (not too surprisingly).

12.3. 1-D LINEAR ELEMENTS AND THE NODAL BASIS 103

Figure 12.3: Mesh and notation for one-dimensional finite element method.

Using linear finite elements, a sample solution might look like that shown in Figure 12.4.

130 T T T

125 1

120~ : i

115} : .

110} : :

105 n

Figure 12.4: A linear element solution on a mesh with constant element size, Ax; = 0.2.

A linear function can be described by two degrees of freedom. For example, a linear
function within an element could be uniquely determined by the following combinations of
information:

e the function values at the two endpoints (i.e. nodes) of the element,
e the function value at some point in the element and the function slope in the element.

For a mesh composed of N elements, a total of N + 1 degrees of freedom exist to describe a
continuous, piecewise linear function. If the approximation were allowed to be discontinuous
from element to element, then there would be 2NV degrees of freedom but continuity removes
N — 1 degrees of freedom (one per internal node). Thus, the degrees of freedom to describe
a solution over a domain discretized into N linear elements could be (among other choices),

e the values of the function at the N + 1 nodes,
e the value of the function at some point in the domain and the slopes in the N elements.

The first choice is the most common and leads to what is known as the nodal basis.

104 LECTURE 12. FINITE ELEMENT METHOD

We now derive the nodal basis functions (i.e. the ¢;(x)) for linear elements. As discussed
above, for /V linear elements we have N + 1 degrees of freedom and therefore N + 1 basis

functions, i.e.,
N+1

T(x) =Y aigi(x), (12.1)

i=1
where a; are the N 4 1 degrees of freedom. For a nodal basis, we choose a; = T(x;).
Substituting this into Equation (12.1) gives,

N+1

= Zl T(z:)¢i(x)

Now, evaluating this expansion at node j,

3 N41
T(z;) = Z T'(z;)di(z5),
=0 = ZT z;)pi(z;) +T(xj) [@j(x;) — 1] + i T(z;)pi(z;).
i=j+1

Since this equation must be satisfied for any T(az), the basis functions must satisfy,

1, if i =7,
@@»_{&iﬁ¢j
Finally, since the solutions vary linearly, this means that ¢;(x) is zero for z < z; ; and

x > x;y1, increases linearly from zero to one from z; ; to x;, and decreases linearly back to
zero at z;y1. ¢;(x) is shown in Figure 12.5. The, specific function is,

(0, for x < z;_4,
Tzl form; < x <
Azi_1? i—1 2]
oi(z) = < I (12.2)
===, for x; <z < Tiy1,
| 0, forz>xi.

Figure 12.5: ¢;(z) for linear elements using a nodal basis.

12.4. 1-D DIFFUSION EQUATION AND WEIGHTED RESIDUAL 105

12.4 1-D Diffusion Equation and Weighted Residual

In this lecture, we will concentrate on the one-dimensional, steady diffusion equation with a
source term. As previously noted in Equation (11.1), the one-dimensional steady diffusion
equation with a source term is,

where k(z) thermal conductivity of the material and ¢(z) is the heat source (per unit area),
respectively. Note that both £ and ¢ could be functions of . Also, let the physical domain
for the problem be from z = —L/2 to z = L/2.

The residual corresponding to this equation is,

R(T,z) = (kT.) +4. (12.3)

The weighted residual is defined as,

L2 . L/2 .
wR(T,2)de = [w((kT) +d].

/L/2 () —L/2 [(w)m q]
where w(x) is an arbitrary weight function. In the finite element method, the weighted
residual statement is usually integrated by parts for diffusion problems so that the number
of derivatives on the weight function and the dependent variable (7) are equal. Thus,
performing integration by part gives the weighted residual as,

~ 1L/2 L/2 ~ L/2
[w sz] - / wy kT, dx + / wq dzx.

—-L/2 ~LJ2 ~L/2
The first term is on the boundaries of the domain and its use in setting boundary conditions
is discussed in Section 12.6. The second and third terms are integrals over the entire domain.
Using the method of weighted residuals requires N +1 weight functions. We will consider
Galerkin methods in which the weight functions are chosen to be equal to the solution basis
functions. Thus, following the method of weighted residuals, we define the j™ weighted

residual as,
- ~ 1L/2 L/2 - L/2

By(T) = [= [5, KTvde+ | L (12.4)

—-L/2 L/2

Example 12.1 (Evaluation of ffﬁQ ¢;. kT, dx for constant k) While [Lﬁz ¢;, kT da is

a global integral (i.e. over the entire domain), in reality ¢;(x) is non-zero only over the two
elements that include node j,

L/2 - Tj41 ~
= [by hTade = [¢, kT do.
—L/2 T

j—1
The derivative of the basis functions is,
(0, forxz <mzi_q,

1
Ao forz_ 1 <x <,
$ir(z)=q " (12.5)
Ao forx; <x < wiyq,

0, forx > xi.

\

106 LECTURE 12. FINITE ELEMENT METHOD

Thus,

[65, T do = = [WTdo - 1 [7" KToan.
zj1 Azjy Jaj Az Ja;
Neat, taking the derivative of T,

- N+1

=1

For the integral in element j — 1, the only non-zero contributions to T, are from ¢j—1 and
¢j, specifically,

n a; — a;_
In element j — 1 : Ty = aj_1¢j_1, + a;0;, = JATJI
j—1
Simalarly,
In element j : Ty = a;;, + ajr10j11, = %
Zj

Substituting these expressions for the derivatives into the integral gives,

Tj41 ~ a; — Qi1 [%i Qj+1 — @ [Ti+1
kT dp = 2 %L / hdy — S~ % J/ kdz.
L o B b P e L,

At this point, we must integrate k(zx) in each element. Efficient numerical methods to ap-
proximate this integral are discussed in Section 12.5. For the situation in which k is constant
throughout the domain, then the integral reduces to,

For k = constant : / kT, dr = k-2 = k2 .
Tj 1 ¢Jw v A.Tj_l A.Z‘j

This result should look somewhat familiar (hint: what does this formula reduce to when the
element size is constant, Ax;_y = Ax;).

Example 12.2 (An FEM example for 1-D diffusion) The Matlab implementation of
the finite element method for the problem described in FExample 11.1 is shown below. Note,
at the bottom of the script the exact solution and the error in the finite element solution
are calculated and plotted. Interestingly, the FEM results for linear elements are exact at
the nodes. However, in between the nodes (i.e. within the elements), there is error since a
linear function is being used to represent a higher-order (curved) solution. The error, i.e.
T(x) — T(z), is shown in Figure 12.6(c) for both N = 5 and N = 10 solutions. A clear
factor of four reduction is observed with the increased grid resolution leading to the conclu-
ston that the method is second order accurate. Note: to construct this plot, each element was
subdivided into 20 points and the FEM and exact solution were calculated at these points and
compared.

% FEM solver for d2T/dx2 + q = 0 where q = 50 exp(x)
b

12.4. 1-D DIFFUSION EQUATION AND WEIGHTED RESIDUAL 107

% BC’s: T(-1) = 100 and T(1) = 100.

h

% Note: the finite element degrees of freedom are
% stored in the vector, v.

% Number of elements

Ne = 5;

x = linspace(-1,1,Ne+1);
% Zero stiffness matrix
K = zeros(Ne+1, Ne+1);

b = zeros(Ne+1, 1);

% Loop over all elements and calculate stiffness and residuals
for ii = 1:Ne,

knl = ii;
kn2 = ii+i;

x1 = x(knl);
x2 = x(kn2);

dx = x2 - x1;

% Add contribution to knl weighted residual due to knl function
K(knl, knl) = K(knl, knl) - (1/dx);

% Add contribution to knl weighted residual due to kn2 function
K(knl, kn2) = K(knl, kn2) + (1/dx);

% Add contribution to kn2 weighted residual due to knl function
K(kn2, knl) = K(kn2, knl) + (1/dx);

% Add contribution to kn2 weighted residual due to kn2 function
K(kn2, kn2) = K(kn2, kn2) - (1/dx);

%» Add forcing term to knl weighted residual
b(knl) = b(knl) - (50*(exp(x2)-x2*xexp(xl) + xl*exp(xl) - exp(xl))/dx);

% Add forcing term to kn2 weighted residual
b(kn2) = b(kn2) - (50*(x2*exp(x2)-exp(x2)-xl*exp(x2)+exp(x1l))/dx);

end

108 LECTURE 12. FINITE ELEMENT METHOD

% Set Dirichlet conditions at x=-1

knl = 1;

K(kni,:) = zeros(size(1,Ne+1));
K(knl, knl) = 1.0;

b(knl) = 100.0;

% Set Dirichlet conditions at x=1

knl = Ne+i;

K(kni,:) = zeros(size(1,Ne+1));
K(knl, knl) = 1.0;

b(kn1) = 100.0;

% Solve for solution
v = K\b;

% Plot solution
figure(1);
plot(x,v,’*=7);
xlabel(’x’);
ylabel(’T’);

% For the exact solution, we need to use finer spacing to plot

% it correctly. If we only plot it at the nodes of the FEM mesh,

% the exact solution would also look linear between the nodes. To
% make sure there is always enough resolution relative to the FEM

% nodes, the size of the vector for plotting the exact solution is
% set to be 20 times the number of FEM nodes.

Npt = 20*Ne+1;

xe = linspace(-1,1,Npt);

Te = -50*exp(xe) + 50*xexsinh(1) + 100 + 50*cosh(1);

hold on; plot(xe,Te); hold off;

% Plot the error. To do this, calculate the error on the same

% set of points in which the exact solution was plot. This

% requires that the location of the point xx(i) be found in the

% FEM mesh to construct the true solution at this point by linearly
% interpolating between the two nodes of the FEM mesh.

verr(1) = v(1) - Te(1);
h = x(2)-x(1);

12.5. GAUSSIAN QUADRATURE 109

for i = 2:Npt-1,

xxi = xe(i);

Ti = Te(i);

j = floor((xxi-xe(1))/h) + 1;
x0 = x(j);

x1 = x(j+1);

v0 = v(j);

vl = v(j+1);

xi = 2x(xxi - x0)/(x1-x0)-1; 7% This gives xi between +/-1
vi = 0.5%(1-x1i)*v0 + 0.5%(1+xi)*vl;
verr(i) = vi - Ti;

end

verr (Npt) = v(Ne+l) - Te(Npt);

figure(2);
plot(xe,verr);
xlabel(’x’);
ylabel(’Error’);

In-class Discussion 12.1 (Implementation of 1-D FEM) In class, we will discuss the
details of the implementation of the FEM into a computer program using the above Matlab
script.

12.5 (Gaussian Quadrature

The finite element method requires the calculation of integrals over individual elements, for
example,

Tjt+1 ~ Zj+1

/ 6, KTpdz, or / 6, qda.

z; z;j
While in some settings these integrals can be calculated analytically, often they are too
difficult. In this situation, numerical integration methods are used.

Gaussian quadrature is one of the most commonly applied numerical integration methods

to this task. Gaussian integration approximates an integral as the weighted sum of the values
of its integrand,

/jl g(&)dé = Zq a;9(&), (12.6)

where N, is the number of quadrature points (i.e. integrand evaluations) and «; and §; are
the weights and locations of integrand evaluations. Note that Gaussian quadrature rules
are developed for specific integration limits, in this case between £ = —1 to +1. Thus, for
integration in an element, we will need to transform from z to £. See Example 12.3 for more
on applying Gauss quadrature to finite element methods.

110 LECTURE 12. FINITE ELEMENT METHOD

Gaussian quadrature integration rules are determined by requiring exact integration of
polynomial integrands, i.e.,

9(€) =co+ a1+l + & + -+ e,

for all values of ¢;. Note that,

o 0 ifi=odd
e =

— 1%1 if i = even
+1 M i 1 1
=>/1 ZcifzdSZQ(Co+§CQ+gC4+"'>. (127)

=1

12.5.1 N, =1 Quadrature Rule

For N, =1, the quadrature rule is,

[o€ de ~ angler).

Now, using Equation (12.7), we determine the highest order polynomial that is integrable
by a single quadrature point,

1 1
2(00+§C2+gc4+"') = 0119(51)

= o (Co+61§1+C2§f+03§?+“‘+chfw)-
Matching term by term gives,

Cp : 2= = a1 = 2,
c1 0:(1151 :>§1:0

Then, checking the ¢, term shows that it is not integrating exactly. So, with one point,

a linear polynomial is the highest order polynomial that can be evaluated exactly and the
quadrature rule is,

+1
[o de~ mge). =2 &=

12.5.2 N, =2 Quadrature Rule

For N, = 2, the quadrature rule is,

/-1;1 9(&) d€ =~ a19(&1) + agg(&).

12.5. GAUSSIAN QUADRATURE 111

Again using Equation (12.7), we determine the highest order polynomial that is integrable
by two quadrature points,

2 (CO + %CQ + %a; + -) = aig(&)
= o (Co+0151+62§f+c3§%+"'+cM§{w)+
Qg (Co +eibo+ 085 ey + - CMféM) :
Matching the first four terms gives the following constraints,
c : 2=a;+ ay,
1 0= + oy,
= &} + s,

= ;& + anél.

Co g
C3 0

These constraints can be meet with,
1 1
gl - _\/ga 52 - \/g

Thus, this rule will integrate cubic polynomials exactly.

a1:a2=1,

Example 12.3 (Calculation of Forcing Integral with Gauss Quadrature) We wish
to apply Gaussian quadrature to evaluate the forcing integral,

Tji+1
/ ’ ¢, qdx. (12.8)
z;j
To do this, we first transform between the x and & space. For this integral in element j, the
transformation would be,

1

z(§) = z; + 5(+ &) (Tj1 —x5), =dr= %(%‘H — x;)d§.

Substitution in the forcing integral gives,
Tj+1 +11 1
/m‘ ¢jqdr = /1 g @i —5)d50dE, = g(€) = S(2501 — 25) ¢5[2(E)] g2 ()]
’ _
Note that the dependence of ¢; and q on & is shown through the dependence of these functions
on r = x(§). However, for the basis functions, it is often easier to directly determine @,

from €. For example, in the case of linear polynomial basis functions, the basis functions
with element j can be written as,

$1(8) = S(1=9),

$2(§) = 5(1 +).

112 LECTURE 12. FINITE ELEMENT METHOD

Clearly, these functions vary linearly with §. ¢1(€) is one at &€ = —1 and decreases linearly
to zero at £ = +1. And, vice-versa for ¢o(§). For the integral, we are considering in this
example, ¢;(z) is equivalent to ¢(§).

The following is a Matlab script that uses Gaussian quadrature to evaluate the forcing
integral and solve the problem described in Example 11.1. The number of points being used is
set at the beginning of the script. Results for both 1-point and 2-point quadrature are shown
in Figures 12.7 and 12.8 for 5 and 10 elements. While the 2-point quadrature rule has lower
error than the 1-point rule, both appear to be second-order accurate since the errors reduce
by nearly a factor of 4 for the factor 2 change in mesh size. Also, the results are no longer
exact at the nodes like they were in Example 12.2 (though the 2-point quadrature rules are
quite close).

% FEM solver for d2T/dx2 + q
b

% BC’s: T(-1) = 100 and T(1)
h

%» Gaussian quadrature is used in evaluating the forcing integral.
h

% Note: the finite element degrees of freedom are

% stored in the vector, v.

0 where q = 50 exp(x)

100.

% Number of elements
Ne = 5;
x = linspace(-1,1,Ne+1);

% Set quadrature rule

Nq = 2;
if (Nq == 1),
alphaq(1) = 2.0; xiq(1) = 0.0;
elseif (Nq == 2),
alphaq(1) = 1.0; xiq(1) = -1/sqrt(3);
alphaq(2) = 1.0; xiq(2) = 1/sqrt(3);
else
fprintf (’Error: Unknown quadrature rule (Nq = %i)\n’,Nq);
return;
end

% Zero stiffness matrix
K = zeros(Ne+1, Ne+l);
b = zeros(Ne+1, 1);

% Loop over all elements and calculate stiffness and residuals
for ii = 1:Ne,

12.5. GAUSSIAN QUADRATURE

knl = ii;

kn2 = ii+i;

x1 = x(knl);

x2 = x(kn2);

dx = x2 - x1;

% Add contribution to knl weighted residual due to
K(knl, knl) = K(knl, knl) - (1/dx);

% Add contribution to knl weighted residual due to
K(knl, kn2) = K(knl, kn2) + (1/dx);

% Add contribution to kn2 weighted residual due to
K(kn2, knl) = K(kn2, knl) + (1/dx);

% Add contribution to kn2 weighted residual due to
K(kn2, kn2) = K(kn2, kn2) - (1/dx);

% Evaluate forcing term using quadrature
for nn = 1:Nq,

% Get xi location of quadrature point
xi = xiq(nn);

% Calculate x location of quadrature point
xq = x1 + 0.5%(1+xi)*dx;

% Calculate q
qq = 50%*exp(xq);

% Calculate phil and phi2
phil = 0.5%(1-x1);
phi2 = 0.5%(1+xi);

% Subtract forcing term to knl weighted residual
b(knl) = b(knl) - alphaq(nn)*0.5*phil*qqg*dx;

% Add forcing term to kn2 weighted residual
b(kn2) = b(kn2) - alphaq(nn)*0.5*%phi2*qq*dx;

end

knl function

kn2 function

knl function

kn2 function

113

114 LECTURE 12.

end

% Set Dirichlet conditions at x=-1

knl = 1;

K(kni,:) = zeros(size(1,Ne+1));
K(knl, knl) = 1.0;

b(kn1) = 100.0;

% Set Dirichlet conditions at x=1

knl = Ne+i;

K(kni,:) = zeros(size(1,Ne+1));
K(knl, knl) = 1.0;

b(knl) = 100.0;

% Solve for solution
v = K\b;

% Plot solution
figure(1);
plot(x,v,’*=7);
xlabel(’x’);
ylabel(’T’);

FINITE ELEMENT METHOD

% For the exact solution, we need to use finer spacing to plot

% it correctly. If we only plot it at the nodes of the FEM mesh,

% the exact solution would also look linear between the nodes. To
% make sure there is always enough resolution relative to the FEM

% nodes, the size of the vector for plotting the exact solution is

% set to be 20 times the number of FEM nodes.
Npt = 20*Ne+1;
xe = linspace(-1,1,Npt);

Te = -50*exp(xe) + 50*xe*sinh(1) + 100 + 50*cosh(1l);

hold on; plot(xe,Te); hold off;

% Plot the error. To do this, calculate the error on the same

% set of points in which the exact solution was plot. This

% requires that the location of the point xx(i) be found in the

% FEM mesh to construct the true solution at this point by linearly
% interpolating between the two nodes of the FEM mesh.

12.6. BOUNDARY CONDITIONS 115

verr(1) = v(1) - Te(1);
h = x(2)-x(1);
for i = 2:Npt-1,

xxi = xe(i);

Ti = Te(i);

j = floor((xxi-xe(1))/h) + 1;
x0 = x(j);

x1 = x(j+1);

v0 = v(j);

vl = v(j+1);

xi = 2x(xxi - x0)/(x1-x0)-1; 7% This gives xi between +/-1
vi = 0.5%(1-xi)*v0 + 0.5%(1+xi)*vl;
verr(i) = vi - Ti;

end

verr (Npt) = v(Ne+l) - Te(Npt);

figure(2);
plot(ze,verr);
xlabel(’x’);
ylabel(’Error’);

12.6 Boundary Conditions

Boundary conditions generally fall into one of three types:

e Set T at the boundary (known as a Dirichlet boundary condition). For heat transfer
problems, this type of boundary condition occurs when the temperature is known at
some portion of the boundary.

e Set T, at the boundary (known as a Neumann boundary condition). For heat transfer
problems, this type of boundary condition occurs when the heat transfer rate is known
at the boundary. For example, an adiabatic boundary would require that 7, = 0.

e Set apT + a7, at the boundary (known as a Robin boundary condition) where «
and a; do not depend on the temperature. For heat transfer problems, this type of
boundary condition occurs when modeling convection (see Example 12.4).

Example 12.4 (Convection boundary condition for heat transfer) Consider the flow
of air over a solid object (see Figure 12.9) with the velocity and temperature of the air being,
Ueyrr and Ty, respectively. Aligning the x direction into the surface, then the heat transfer
rate at the surface is,

Qwall = _kTan (129)

116 LECTURE 12. FINITE ELEMENT METHOD

where T(x) is the temperature inside the solid and k is the thermal conductivity of the solid.
A common approach to modeling the heat transfer into the solid as a result of the airflow
1s based on specifying a heat transfer coefficient for the airflow, heg, which is related to the
heat transfer rate by,

Qwall
Rogy = ——22all 12.10
! Temt - Twall ()

Note that hey s generally a function of the external velocity and other flow properties.
Combining Equations (12.9) and (12.10) gives the following boundary condition at the surface
of the solid,

_kT:c = h'ezt (Tewt - Twall)) (1211)

where Tyay 18 the temperature of the solid at its surface. This equation can be re-arranged
into the Robin boundary condition form,

—kTm + hemtTwall = hemtTezt-

12.6.1 Implementation of Dirichlet Boundary Conditions

To demonstrate the implementation of a Dirichlet boundary condition, suppose that the
value of the temperature is known at © = —L/2, specifically,

T(~L/2) = Tipr.

This condition is set by forcing the corresponding nodal degree of freedom to be the desired
value. At z = —L/2, the corresponding nodal degree of freedom would be a; (the value of
the temperature at the first node), thus, the boundary condition is implemented as,

a; = Tleft-

12.6.2 Implementation of Neumann Boundary Conditions

To demonstrate the implementation of a Neumann boundary condition, suppose that the
heat transfer rate were known at x = L/2, specifically,

_kTw(L/Q) = Q'right-

This condition is enforced through the weighted residual for the last node, j = N + 1.
Specifically,

~ 1L/2 L/2 - L/2
Ry = [oxa b)) = [owa bTadot [onigda

Because ¢y 1(z) is zero except in the last element, this weighted residual reduces to,

Ryi1 = (on41kT,)

TN+1 ~ TN 41
- / ONt1g kT dz + / dni1qd.
TN TN

T=TN 41

12.6. BOUNDARY CONDITIONS 117

The two integral terms are calculated in the standard manner. The first term is where the
Neumann boundary condition is set through substitution of —kT, = Q,isn:. Specifically, the
weighted residual becomes,

TN+1

Ryi1 = —Ons1(@n41)Qright — /

TN

~ TN+1
o e+ [dypqd.

N

Note that the boundary term, —¢n11(zn4+1)@right does not depend on the temperature and
thus this boundary condition does not impact the stiffness matrix.

12.6.3 Implementation of Robin Boundary Conditions

To demonstrate the implementation of a Robin boundary condition, suppose that a convec-
tive heat transfer boundary condition were to be set at © = L/2, specifically,

—kTm(L/Q) = hea)t [Tezt - T(L/2)] :

For more on convective boundary conditions, see Example 12.4. Following the basic process
outlined in the Neumann boundary condition, the weighted residual for j = N + 1 is,

Ry = (¢N+1 ka)

TN+1 ~ TN +1
-~ - / ON1, KTy d + / Ony1qd.
LT=TN+1 T TN

N
Substituting —kT, = heg [Tm - T(:c N+1)] in the boundary term gives,

IN+1

Ryi1 = —¢ni1(Tn41)Pext [Tewt — T(xNH)] — /

N

- TN4+1
ONt1, KT dz + / dnt+1qd.

N
As opposed to the Neumann boundary condition, the Robin boundary condition implemen-
tation does introduce a new dependence on the solution, specifically on T'(zy1). This will

cause a change in the stiffness matrix. Furthermore, the T,,; term will alter the right-hand
side vector in the FEM numerical implementation.

In-class Discussion 12.2 (Implementation of boundary conditions) In class, we will
discuss the details of the implementation of the boundary conditions into a computer program
using the following Matlab script.

% FEM solver for k d2T/dx2 + q = 0 where q = 50 exp(x)
b

% Thermal conductivity is set to one, k=1.

b

% BC’s:

A

%» At x=-1: T(-1) = 100 (Dirichlet)

b

% At x=1, two options exist:

118

h
h
h
h
h
h

Specified he
Convection:
The choice of which bc

If RightBC = 0, heat tr
a convection BC is appl

=

h
h
h
h
h
h

clear all;
% Number of elements

Ne = 5;
x = linspace(-1,1,Ne+1);

% Set RightBC info

RightBC = 0;

if (RightBC == 0),
Qright = 0;

else,
hext = 10000;
Text = 100;

end

% Set quadrature rule
Nq = 2;
if (Ng == 1),
alphaq(1) = 2.0; xiq(1)
elseif (Nq == 2),
alphaq(1) = 1.0; xiq(1)
alphaq(2) 1.0; xiq(2)
else
fprintf (’Error: Unknown
return;
end

% Zero stiffness matrix
K = zeros(Ne+1, Ne+1);
b = zeros(Ne+1, 1);

LECTURE 12. FINITE ELEMENT METHOD

at transfer: dT/dX = Qright
-k dT/dx = hext * (Text - T(1))
to use is made through RightBC.

ansfer rate is specified. Otherwise,
ied.

Gaussian quadrature is used in evaluating the forcing integral.

Note: the finite element degrees of freedom are
stored in the vector, v.

0.0;

-1/s8qrt(3);
1/sqrt(3);

quadrature rule (Nq = %i)\n’,Nq);

12.6.

BOUNDARY CONDITIONS

% Loop over all elements and calculate stiffness and residuals

for

kn
kn

x1
x2

dx

h
K(

%
K(

%
K(

%
K(

h
fo

ii = 1:Ne,
1 =ii;

2 = ii+1;

= x(knl);
= x(kn2);
= x2 - x1;

Add contribution to knl weighted residual due

knl, knl) = K(knl, knl) - (1/dx);

Add contribution to knl weighted residual due

knl, kn2) = K(knl, kn2) + (1/dx);

Add contribution to kn2 weighted residual due

kn2, knl) = K(kn2, knl) + (1/dx);

Add contribution to kn2 weighted residual due

kn2, kn2) = K(kn2, kn2) - (1/dx);

Evaluate forcing term using quadrature
r nn = 1:Nq,

% Get xi location of quadrature point
xi = xiq(an);

% Calculate x location of quadrature point
xq = x1 + 0.5%(1+xi)*dx;

% Calculate q
qq = 50*exp(xq);

% Calculate phil and phi2
phil = 0.5%(1-xi);
phi2 = 0.5%(1+xi);

to

to

to

to

% Subtract forcing term to knl weighted residual

b(knl) = b(knl) - alphaq(nn)*0.5%phil*qq*dx;

%» Add forcing term to kn2 weighted residual

knl function

kn2 function

knl function

kn2 function

119

120

LECTURE 12. FINITE ELEMENT METHOD

b(kn2) = b(kn2) - alphaq(nn)*0.5%phi2*qq*dx;

end

end

% Set Dirichlet conditions at x=-1
knl = 1;

K(kni,:) = zeros(size(1,Ne+1));
K(knl, knl) = 1.0;
b(knl) = 100.0;

% Set boundary condition at x=1
knl = Ne+i;

if (RightBC == 0), % Specify heat transfer rate (Neumann)

b(knl) = b(knl) + Qright;

else, % Convective

K(knl,knl1) = K(knl,knl) + hext;
b(knl) = b(knl) + hext*Text;
end

% Solve for solution
v = K\b;

% Plot solution
plot(x,v,’*-’);
xlabel(’x’);
ylabel(°T’);

12.6. BOUNDARY CONDITIONS 121

-1 -08 -06 -04 02 0 0.2 0.4 0.6 0.8 1
x

(a) N =5 elements

95

(b) N =10 elements

) L L L L 1 L L L
1 -08 -06 -04 02 0 0.2 0.4 0.6 0.8 1
x

(c) Error

Figure 12.6: Comparison of finite element solution to exact solution.

122 LECTURE 12. FINITE ELEMENT METHOD

-1 -08 06 -04 -02 0 0.2 04 0.6 0.8 1

(a) N =5 elements

95

(b) N =10 elements

-1 70‘.5 70‘6 70‘4 70‘.2 é 0‘2 ﬂi“ Uis U‘.B 1
(c) Error

Figure 12.7: Comparison of finite element solution using N, = 1 point Gaussian quadrature
to exact solution.

12.6. BOUNDARY CONDITIONS

(a) N =5 elements

95

(b) N =10 elements

-1 -08 -06 -04 -0.2 0 0.2 0.4 0.6 0.8 1
x

(c) Error

123

Figure 12.8: Comparison of finite element solution using N, = 2 point Gaussian quadrature

to exact solution.

124 LECTURE 12. FINITE ELEMENT METHOD

Uezt »

Tezt
T(O) = Twall

T

Figure 12.9: Convection above a wall of a flow with velocity Ue,; and temperature 7,,;. The
temperature of the wall at the surface is Ty (the surface is at = 0).

Lecture 13

The Finite Element Method for
Two-Dimensional Diffusion

In this lecture, we will consider the finite element approximation of the two-dimensional
diffusion problem,

V- (kVT)+q=0. (13.1)

As in the previous discussion of the method of weighted residuals and the finite element
method, the approximate solution will have the form,

N
T(JZ, y) = Z G,Z'QSZ'(QT, y)a
=1

where ¢;(x,y) are the known basis functions and the a; are the unknown weights to be
determine for the specific problem. Following the Galerkin method of weighted residuals, we
will weight Equation (13.1) by one of the basis functions and integrate the diffusion term by
parts to give the following weighted residual,

R, = /m &, kVT - ftds — /Q Vé; - (kVT) dA + /Q ¢jqdA = 0. (13.2)

13.1 Reference Element and Linear Elements

In multiple dimensions, a common practice in defining the polynomial functions within
an element is to transform each element into a canonical, or so-called ’reference’ element.
Figure 13.1 shows the mapping commonly used for triangular elements which maps a generic
triangle in (z,y) into a right triangle in (&, &).

In the reference element space, the nodal basis for linear polynomials will be one at one
of the nodes, and reduce linearly to zero at the other nodes. These functions are,

$1(61,&2) = 1-8& — &, (13.3)
$2(&1,82) = &1, (13.4)
$3(&1,6) = & (13.5)

125

126 LECTURE 13. 2-D FEM

(73,y3) &
(0,1)
y (22, 0) % ’
1 2
&1
('rlayl) (0’0) (1’0)

Figure 13.1: Transformation of a generic triangular element in (z,y) into the reference
element in (61,&2).

Then, within the element, the solution 7 in the (&1, &) space is the combination of these
three basis functions multiplied by the corresponding nodal weights,

fl, 52 Zazfﬁz &1, {:2) (13-6)

Using Equation (13.6), the value of T can be found at any (&,&). To find the (z,v)
locations in terms of the (&;,&;), we can expand them using the nodal locations and the
nodal basis functions, i.e.,

w

(&, &) = Z i(&1, &)

Since the ¢;(&1,&;) are linear functions of & and &, this amounts to a linear transformation
between (&1, &) and (z,y). Specifically, substituting the nodal basis functions gives,

T(61,&) = 71 (1 =& — &) + by + T3,
= T(&,8) = T+ (To—T1) &+ (P35 — 7) &

This can be written in a matrix notation as,

()= Co)= (oo o) (8) w1

This equation can be inverted to also determine (&1, &;) as a function of (z,y),

S\ _ [r2—11 33— 11 ! T — 2
<€2>_<y2—y1 y3—y1) <y—y1> (13.8)

13.2. DIFFERENTIATION USING THE REFERENCE ELEMENT 127

13.2 Differentiation using the Reference Element

To find the derivative of T with respect to (or similarly y) within an element, we differen-
tiate the three nodal basis functions within the element,

3 o (3
I, = s <z:21 az’¢i> ;
5. 0¢;

To find the z-derivatives of each of the ¢;’s, the chain rule is applied,

0¢; _ 0¢; 0&: n 0¢; 0&
oxr 0& Ox 0& Oz

Similarly, to find the y-derivatives, the derivatives with respect to v,

06 _ 06,06 , 96, 06
dy 06 oy | 06 oy

The calculation of the derivatives of ¢; with respect to the &’s gives,

O _ _; 9 _
0&1 ’ 0&s ’
02 Oy

Aae 15 ae Oa

0& 082

06 _ 0

0&, 08

The only remaining terms are the calculation of %, %, etc. which can be found by differ-

entiating Equation (13.8),

of

—-1
To —T1 T3 — T
ox

Y2—Y1 Ys— U1
Ys — Y1 —(333 - $1)
_(y2 - yl) To — T ’

J = (22 — 21)(ys — y1) — (z3 — 1) (y2 — Y1)

Note that the Jacobian, J, is equal to twice the area of the triangular element.

Il
SV N

where

13.3 Construction of the Stiffness Matrix

The stiffness matrix arises in the calculation of i, V@;- (kVT) dA. Asin the one-dimensional
case, the j-th row of the stiffness matrix K corresponds to the weighted residual of ¢;. The

128 LECTURE 13. 2-D FEM

1-th column in the j-th row corresponds to the dependence of the j-th weighted residual on
a;. Further drawing on the one-dimensional example, the weighted residuals are assembled
by calculating the contribution to all of the residuals from within a single element. In the
two-dimensioal linear element situation, three weighted residuals are impacted by a given
element, specifically, the weighted residuals corresponding to the nodal basis functions of the
three nodes of the triangle. For example, in each element we must calculate,

/Q V- (kVT) da, /Q V- (kVT) da, /Q Vs (kVT) da,

where €2, is spatial domain for a specific element. As described in Section 13.2, the gradient
of T' can be written,

3 3
VT(z,y) =Y a;Vei(z,y),
i=1

thus the weighted residuals expand to,
~ 3
[Vo5 (bT) dA=Y aiK;e where K= [Vo, (kV) dA.
Q = Q
For the situation in which £ is constant, and linear elements are used, then this reduces to,

Kj,i = kv¢] - V(biAe

where A, is the area of element e.

13.4 Integration in the Reference Element

The reference element can also be used to evaluate integrals. For example, consider the
evaluation of the forcing function integral within an element,

/5 ., w(@ (@) dA

In transforming the integral from (x,y) to (&1,&2), the differential area of integration must
be transform using the following result,

dA = dz dy = Jd€¢, d& = J dA,. (13.9)

Thus, the integrals can now be evaluated in reference element space,
| w(@@) a(#(&) JdAe.
¢

In-class Discussion 13.1 (Calculation of the Mass Matrix)

Lecture 14

Higher-order Finite Elements

14.1 Nodal Basis for Higher Order Elements

Until now, we have considered solutions which were allowed to vary at most linearly across
an element. We now consider higher-order functions within the element. For simplicity, we
will restrict our attention to one-dimensional problems. A p-th order polynomial has p + 1
degrees of freedom, i.e. the coefficients of each term,

T(z) = ¢y + a1z + cox® + - - + cpaP.

Thus, a general basis for a p-th order polynomial will require p + 1 basis functions within an
element,

p+1

T(z) =" ai¢i(z) in an element.

i=1
Building on the nodal basis approach described in Section 12.3 for linear elements, a common
approach to choosing a basis for higher-order elements is to insert nodes within an element
in addition to the nodes at the boundaries of the elements, specifically p—1 additional nodes
internal to the element.

Let’s consider building a nodal basis for quadratic elements. In this case, one additional
node is added and this node is placed at the midpoint of the element. Using the one-
dimensional reference element which extends from —1 < & < 1, this places nodes at £ = —1,
0, and 1. The unknowns are assumed to be the values at these nodes,

a =T(=1), ay;=T(0), a3=T(1).
which leads to the following constraints on ¢;(&)’s,

p1(-1) =1, ¢1(0)=0, ¢ (1)=0.

$2(—1) =0, ¢2(0) =1, ¢(1)=0.
¢3(—1) =0, ¢3(0)=0, ¢3(1)=1.

130 LECTURE 14. HIGHER-ORDER FEM

Applying these constraints and solving for the quadratic ¢;(£) gives,

4O = —5E1-8),
5O = (1-901+9),
656 = FE1+)

Figure 14.1: Nodal basis functions for a quadratic element with equally-spaced nodes.

In-class Discussion 14.1 (Construction of global ¢(z) for quadratic elements)

14.2 Implementation of higher-order FEM

The implementation details are essentially the same as in the linear element case. Shown
below is a Matlab script for a quadratic FEM using a nodal basis.

14.2. IMPLEMENTATION OF HIGHER-ORDER FEM 131

0 where q = 50 exp(x)

% FEM solver for d2T/dx2 + q
b

% BC’s: T(-1) = 100 and T(1)
b

% Note: the finite element degrees of freedom are
% stored in the vector, v.

100.

% Set number of Gauss points (only used for forcing term in this example)
NGf = 3;
if (NGf == 3),
xiGf = [-sqrt(3/5); 0; sqrt(3/5)];
aGf = [5/9; 8/9; 5/9]1;
elseif (NGf == 2),
xiGf = [-1/sqrt(3); +1/sqrt(3)];
aGf = [1.0; 1.0];
else,
NGEf = 1;
xiGf = [0.0];
aGf = [2.0];
end

% Number of elements
Ne = 10;
x = linspace(-1,1,Ne+1);

% Zero stiffness matrix
K = zeros(2xNe+1, 2*Ne+1);
b = zeros(2*Ne+1l, 1);

% Loop over all elements and calculate stiffness and residuals
for ii = 1:Ne,

knl = 1 + 2x(ii-1);
kn2 = 2 + 2%(ii-1);
kn3 = 3 + 2%(ii-1);

x1 = x(ii);
x3 = x(ii+1);

dx = x3 - x1;
dxidx = 2/dx;
dxdxi = 1/dxidx;

132 LECTURE 14. HIGHER-ORDER FEM

%» Add contribution to knl weighted residual

K(knl, knl) = K(knl, knl) - dxidxx(7/6);
K(knl, kn2) = K(knl, kn2) - dxidx*(-4/3);
K(knl, kn3) = K(knl, kn3) - dxidx*(1/6);

%» Add contribution to kn2 weighted residual

K(kn2, knl) = K(kn2, knl) - dxidx*(-4/3);
K(kn2, kn2) = K(kn2, kn2) - dxidx*(8/3);
K(kn2, kn3) = K(kn2, kn3) - dxidx*(-4/3);

% Add contribution to kn3 weighted residual
K(kn3, kn1) = K(kn3, knl) - dxidxx(1/6);
K(kn3, kn2) = K(kn3, kn2) - dxidx*(-4/3);
K(kn3, kn3) K(kn3, kn3) - dxidx*(7/6);

% Use Gaussian quadrature to evaluate forcing term integral
for nn = 1:NGf,

% Get xi for Gauss point
xiG = xiGf(nn);

% Find N1, N2 and N3 (i.e. weighting/intepolants) at xiG

N1 = -0.5%xiG*(1-xiG);
N2 = (1-xiG@)*(1+xiG);
N3 = 0.5*%xiG*(1+xiG);

% Find x for Gauss point
XG = 0.5%(1-xiG)*x1 + 0.5%(1+xiG)*x3;

% Find f for Gauss point
fG = -50%exp(xG) ;

%» Evaluate integrand at Gauss point for weight functions at nodes

gGl = N1xfG*dxdxi;
gG2 = N2xfGxdxdxi;
gG3 = N3*fG*dxdxi;

% Send to correct right-hand side term

b(knl) = b(knl) + aGf(nn)*gG1l;
b(kn2) = b(kn2) + aGf(nn)*gG2;
b(kn3) = b(kn3) + aGf(nn)*gG3;

end

14.2. IMPLEMENTATION OF HIGHER-ORDER FEM

end

% Set Dirichlet conditions at x=0

knl = 1;

K(kni,:) = zeros(size(1,2*Ne+1));
K(knl, knl) = 1.0;

b(kn1) = 100.0;

% Set Dirichlet conditions at x=1

knl = 2xNe+1;

K(kni,:) = zeros(size(1,2*Ne+1));
K(knl, knl) = 1.0;

b(knl) = 100.0;

% Solve for solution
= K\b;

<

% Plot it and compare. Note: since even the finite element

% solution varies more than linearly across an element, we need to
% subdivide each element, evaluate the basis functions, and plot

% the FEM solution to see the higher order variations.

Nplot =
nnn = 0;
for ii = 1:Ne,

knl = 1 + 2%(ii-1);
kn2 = 2 + 2%(ii-1);
kn3 = 3 + 2%(ii-1);

x1 = x(ii);
x3 = x(ii+1);

vl = v(knl);
v2 = v(kn2);
v3 = v(kn3);

for nn = 1:Nplot,

% Get xi for plot point

20; % Number of points per element to plot

133

134 LECTURE 14. HIGHER-ORDER FEM

xiG = -1 + 2x(nn-1)/(Nplot-1);

% Find N1, N2 and N3 (i.e. weighting/intepolants) at xiG
N1 = -0.5*%xiG* (1-xiG) ;
N2 (1-xiG) * (1+xiG) ;
N3 0.5%xiG* (1+xiG) ;

% Find x and v for plot point
xG = 0.5%(1-xi@®) *x1 + 0.5%(1+xiG) *x3;
vG = vixN1 + v2*N2 + v3*N3;

nnn = nnn + 1;
xp(nnn) = xG;
vp(nnn) = vG;
up(nnn) = -50%exp(xG) + 50*xG*sinh(1) + 100 + 50%*cosh(1);

end
end

figure(1);
plot(xp,vp,’r’);hold on;
plot(xp,up); hold off;
xlabel(’x’);
ylabel(’u’);

figure(2);

plot (xp,vp-up);
xlabel(’x’);
ylabel(’Error’);

In-class Discussion 14.2 (Behavior of Quadratic FEM) The results in Figures 14.2
and 14.3 will be discussed in class.

14.3 Hierarchical Basis for Quadratic Elements

In this section, we consider a different basis for quadratic polynomials. Since we want the
solution to be continuous from element-to-element, we will still specify that a; and a3 are
the values at the end of the elements (i.e. at the nodes),

a =T(-1), a3=T().

However, we will no longer associate as with the midpoint value of the temperature. Instead,
let the additional constraint be that as is the value of the second derivative in the middle of

14.3. HIERARCHICAL BASIS FOR QUADRATIC ELEMENTS 135
the reference element, specifically, 3
o = TfE(O)
These three constraints lead to the following conditions on the ¢;(§):
¢1(—1) =1, ¢1(0) =0, ¢:(1)=0.

$2(—1) =0, 2(0) =1, (1) =0.
¢3(—1) =0, ¢3§g(0) =0, ¢3(1) =L
Applying these constraints and solving for the quadratic ¢;(£) gives,

O = F01-6),
w6 = (e-1),
6O = F0+9).

This basis is known as a hierarchical basis because the quadratic basis functions are the usual
linear basis functions (¢; and ¢3) with an additional function (¢9) that brings the quadratic
contribution into the approximate solution. In other words, the basis is hierarchical because
the basis for a linear-varying solution is a subset of the basis for the quadratic solution. The
plots of ¢1, ¢, and ¢3 are shown in Figure 14.4.

136

LECTURE 14.

(a) N =5 elements

(b) N =10 elements

(c) Error

HIGHER-ORDER FEM

Figure 14.2: Comparison of quadratic finite element solution using 3 point Gaussian quadra-

ture on forcing function.

14.3. HIERARCHICAL BASIS FOR QUADRATIC ELEMENTS

(a) N =5 elements

(b) N =10 elements

(c) Error

137

Figure 14.3: Comparison of quadratic finite element solution using 1 point Gaussian quadra-

ture on forcing function.

138 LECTURE 14. HIGHER-ORDER FEM

05

L L L .)))
1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
&

Figure 14.4: Plots of quadratic hierarchical basis functions.

14.3. HIERARCHICAL BASIS FOR QUADRATIC ELEMENTS

(a) N =5 elements

(b) N =10 elements

(c) Error

139

Figure 14.5: Comparison of quadratic finite element solution with hierarchical basis using 3

point Gaussian quadrature on forcing function.

140 LECTURE 14. HIGHER-ORDER FEM

Lecture 15

Introduction to the Monte Carlo

Method

In this lecture, we begin our exploration of probabilistic methods, i.e. numerical methods
which are used to quantify the impact of uncertainty. In particular, we will focus on the
Monte Carlo method as it is the most common probabilistic method and is the foundation

for many others.

To make our discussion concrete, we will consider a simplified model for the heat transfer
through a cooled turbine blade as shown in Figure 15.1. A one-dimensional model of the

heat transfer along the dashed line is,

q
q
q
q

hgas (Tgas - TTBC’) 3

k
ks (Tree — Tmn) »

Lrgc

k_m (T T)
Lm mh mc) »
h'cool (Tmc - Tcool) -

(15.3)
(15.4)

Then, given the values of hgas, Tgas, krBC, LTBC) Emy Lim,s Peoot, and Teee, We can solve these

Tgas
[

Too))

. thermal barrier coating
|

q' I gas
I
~— IrBc
! h
| m
* : Tmc
I
-
: T ool

Figure 15.1: Turbine blade heat transfer example

141

142 LECTURE 15. MONTE CARLO INTRODUCTION

four equations to determine, Trgc, Timn, Tme, and ¢. In the design of cooled turbine blades, a
key parameter is the hot-side metal temperature, 7;,,, because as this temperature increases,
the durability (usable life) of a blade decreases. Thus, the goal of the heat transfer design is
to maintain the metal temperatures at an acceptablly low value while minimizing cost.

Example 15.1 (Nominal Analysis of Turbine Blade Heat Transfer) A typical, de-
terministic analysis of the turbine blade heat transfer problem would assume that all of the
input parameters are at their nominal, i.e. design-intent, values. Suppose the design-intent

values were,
Rgas = 3000 W/(m?K), Peoor = 1000 W/ (m?K),

Tyas = 1500 K, Ty = 600 K,
kTBC: 1W/(mK), km :20W/(mK),
Lypc = 0.0005m, L, =0.003m.

The results of this design-intent analysis give,
Trpc = 1348.7K, T,,=1121.8K, T, =1053.8K, ¢=453780W/m>.

Due to manufacturing variability, the parameters of the actual manufactured blades are
not exactly the design intent values but rather are distributed. For example, due to the
difficulty of applying the thermal barrier coating on the outside of the blades, the thickness
of the thermal barrier coating is variable. The role of probabilistic methods is to quantify the
impact of this type of variability on properties of interest (e.g. the hot-side metal tempera-
ture). The results of the probabilistic analysis can take many forms depending on the specific
application. In the example of the turbine blade where the hot-side metal temperature is
critical, the following information might be desired from a probabilistic analysis:

e The distribution of T,,, that would be observed in the population of manufactured
blades.

e The probability that T, is above some critical value (indicating the blade’s life will
be unacceptable low).

e Instead of determining the entire distribution of 7;,;, sometimes knowing the mean
value, pr , , is sufficient.

e To have some indication of the variability of 7}, without requiring accurate estimation
of the entire distribution, the standard deviation, or,_,, can be used.

The Monte Carlo method is based on the idea of taking a small, randomly-drawn sample
from a population and estimating the desired outputs from this sample. For the outputs
described above, this would involve:

e Replacing the distribution of 7;,, that would be observed over the entire population
of manufactured blades with the distribution (i.e. histogram) of T,,, observed in the
random sample.

15.1. MONTE CARLO METHOD FOR UNIFORM DISTRIBUTIONS 143

e Replacing the probability that 7}, is above a critical value for the entire population of
manufactured blades with the fraction of blades in the random sample that have T},
greater than the critical value.

e Replacing the mean value of 7}, for the entire population with the mean value of the
random sample.

e Replacing the standard deviation of 7, for the entire population with the standard
deviation of the random sample.

Since this exactly what is done in the field of statistics, the analysis of the Monte Carlo
method is a direct application of statistics.
In summary, the Monte Carlo method involves essentially three steps:

1. Generate a random sample of the input parameters according to the (assumed) distri-
butions of the inputs.

2. Analyze (deterministically) each set of inputs in the sample.

3. Estimate the desired probabilistic outputs, and the uncertainty in these outputs, using
the random sample.

15.1 Monte Carlo Method for Uniform Distributions

To demonstrate the Monte Carlo method in more detail, let’s consider the specific case where
the thermal barrier coating in the previous turbine blade example is known to be uniformly
distributed from 0.00025m < Lppc < 0.00075 m as shown from the probability distribution
function (PDF) of Lyp¢ in Figure 15.2.

2500

2000

1500

PDF(L o)

1000

500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
L -3
TBC x10

Figure 15.2: Probability distribution function (PDF) of Lrpc uniformly-distributed from
0.00025m < Lrpc < 0.00075 m.

The first step is to generate a random sample of Lrgc. The basic approach relies on the
ability to generate random numbers which are uniformly distributed from 0 to 1. This type of

144 LECTURE 15. MONTE CARLO INTRODUCTION

functionality exists within many different scientific programming environments or languages.
In Matlab, the command rand provides this capability. Then, using the uniform distribution
from 0 to 1, a uniform distribution of Lrgc over the desired range can be created,

Lrgc = 0.00025 + 0.0005u,

where u is a random variable uniformly distributed from 0 to 1. This approach is used to
create the samples shown as histograms in Figure 15.3 for samples of size N = 100, 1000,
and 10000. For the smaller sample size (specifically N = 100), the fact that the sample
was drawn from a uniform distribution is not readily apparent. However, as the number of
samples increases, the uniform distribution becomes more evident. Clearly, the sample size
will have a direct impact on the accuracy of the probabilistic estimates in the Monte Carlo
method.

The following is a Matlab script that implements the Monte Carlo method for this uniform
distribution of Lygc. The distributions of 7}, shown in Figure 15.4 correspond to the Lrpe
distributions shown in Figure 15.3 and were generated with this script.

clear all;

% Nominal values of input parameters

hgas = 3000; % TBC-gas heat transfer coef. (W/(m~2 K))

Tgas = 1500; % Mixed gas temperature (K)

ktbc = 1; % TBC thermal conduct. (W/mK)

km = 20; % Metal thermal conduct. (W/mK)

Lm = 0.003; % Metal thickness (m)

hcool = 1000; % Coolant-metal heat transfer coef. (W/(m~2 K))
Tcool = 600; % Coolant temperature (K)

% Number of Monte Carlo trials

N = 100;

Ltbc = zeros(N,1);

Tmh = zeros(N,1);

for n = 1:N,
% generate Ltbc values using a uniform distribution
Ltbc(n) = 0.00025 + 0.0005%*rand;

% Solve heat transfer problem

[Ttbc, Tmh(n), Tmc, q] = bladelD(hgas, Tgas,
ktbc, Ltbc(n),
km, Lm,

15.2. MONTE CARLO METHOD FOR NON-UNIFORM DISTRIBUTIONS 145

hcool, Tcool);
end

figure(1);

hist (Ltbc,20);

xlabel (°L_{tbc} (m)’);
figure(2);
hist(Tmh,20);

xlabel (°T_{mh} (X)’);

15.2 Monte Carlo Method for Non-Uniform Distribu-
tions

Input variability can be distributed in many ways beyond the simple uniform distribution
considered above. In this section, we discuss a common approach used to implement the
Monte Carlo method for non-uniform distributions. However, we note that for many of the
most common distribution types, random number generators widely available. For example,
in Matlab, the function randn returns random numbers that are normally distributed with
a mean of zero and a standard deviation of one. In Matlab’s Statistics Toolbox, many other
distribution types are available (see the documentation for the random function for details).

In these notes, we will discuss the inversion method for generating random numbers with
non-uniform distributions. While other methods exist for generating random numbers, they
are often based on the inversion method. The basic principle of the inversion method is
to utilize the inverse of the cumulative distribution function (CDF) to transform a uniform
distribution to a desired distribution. Recall that the CDF is defined as the integral of the
PDF,

and that the CDF is related to probability by,
F(z)=P{x<uz}.

That is, the probability of the random variable x < x is the CDF evaluated at . As shown in
Figure 15.5, F(x) ranges from 0 to 1. The inversion method for generating random numbers
of an arbitrary distribution consists of the following two steps:

1. Generate a random number, u, from a uniform distribution between 0 and 1.

2. Given u, find the value of z at which u = F(z). In otherwords, invert F'(x) such that,
z = F~Y(u).

146 LECTURE 15. MONTE CARLO INTRODUCTION

15.2.1 Triangular Distributions

This was discussed in class. Hand-written notes were distributed.

15.2.2 Empirical Distributions

This was discussed in class.

15.2. MONTE CARLO METHOD FOR NON-UNIFORM DISTRIBUTIONS 147

(¢) N = 10000

Figure 15.3: Distribution of a random sample from a uniformly-distributed Lt g for a sample
size of N = 100, 1000, and 10000.

148 LECTURE 15. MONTE CARLO INTRODUCTION

1080 1100 1120 1140 1160 1180 1200
T (0

(a) N =100

1080 1100 1120 1140 1160 1180
T (K

(b) N = 1000

600

500

300

200

100

1080 1100 1120 1140 1160 1180
Ton (0

(¢) N = 10000

Figure 15.4: Distribution of a 7},, from a uniformly-distributed Lrpc for a sample size of
N =100, 1000, and 10000.

15.2. MONTE CARLO METHOD FOR NON-UNIFORM DISTRIBUTIONS 149

0.9

0.7k
06}
Z o5k
04f
03f
02k

0.1

Figure 15.5: Cumulative distribution function (CDF) of a normally distributed variables
with zero mean and unit variance.

150 LECTURE 15. MONTE CARLO INTRODUCTION

Lecture 16

Error Estimates
for the Monte Carlo Method

These notes address the accuracy of Monte Carlo methods in estimating probabilistic out-
puts. We will begin with errors when estimating the expected (i.e. mean) value, and then
move on to other quantities such as the variance and probability.

16.1 Mean

Let the output of interest be labelled y, e.g. y = T,,, in the previous turbine blade heat
transfer problem. For a Monte Carlo simulation of sample size, /N, label the individual
values from each trial be labelled, y; where i = 1 to N. In this section, we will consider the
error made when estimating the expected value, also known as the mean, of y when using a
sample of size N. This Monte Carlo error estimate is in fact a direct application of the field
of statistics. If the distribution of y is f(y), then the expected value of y is,

=B = [uf)dy.

Using the N trials, a reasonable estimator for 1, would be,

1 N
N;yz

In-class Discussion 16.1 (Mean of T,,, from Monte Carlo) The variability of the sam-
ple mean of T, will be demonstrated in class using various sample sizes.

As seen in the In-class Discussion 16.1, the sample mean, 7T,,, varies from Monte Carlo
simulation-to-simulation. However, as the sample size N increased, the variability of the
sample means decreased. One question which might be asked is: on average how accurate is
7 as an estimate of 11,7 To see this, take the expectation of § — 1,

EY-py) = E@ -,

151

152 LECTURE 16. MONTE CARLO ERROR ESTIMATES
1 N
= FE (NZ:ZIZ/Z> — My
1 N
= N;E(%) — Hy-
Since the y;’s occur from a random sampling of the inputs when using the Monte Carlo

method, then E(y;) = p,, thus:

1

E(y — 1) :ﬁN:“y_:“y:O-

This result shows that on average, the error in using 7 to approximate p, is zero. When an
estimator gives an expected error of zero, it is called an unbiased estimator.
To quantify the variability in ¥, we use the variance of 7 — p,:

E|g-mw)] = E ((%é”—uyﬂ

= E (%;(yi—uy)>],
= E:%(yl_My+y2_,uy+"')(y1_ﬂy+92_Uy+"')]7
= E_%{(?Jl_,Uy)2+(yQ_My)2+"'+2(y1_,“y)(yQ_,uy)+"'}]-

Because the Monte Carlo method draws independent, random samples, then the following
two conditions hold,

E (i~ m)’] = E[(y — m)*] = 0.
E(yi — py)(yi — py)] = 0.

Thus, the variance of the mean estimate is,

2|8

E - m)"] =

Summarizing, we have found that,

2|8

g =E@) =py, o02=E[7—)=

Note, the quantity, oy is known as the standard error of the estimator. Thus, the standard
error decreases with the square root of the sample size, v/ N. In other words, to decrease the
variability in the estimate by a factor of 10 requires a factor of 100 increase in the sample
size.

In-class Discussion 16.2 (Distribution of T,,,) In-class we will discuss how Ty, is dis-
tributed from Monte Carlo simulation-to-simulation.

16.2. OTHER ESTIMATORS AND STANDARD ERRORS 133

For large sample size N, the central limit theorem can be applied to approximate the
distribution of 3. Specifically, the central limit theorem says for large N, the distribution of
y will approach a normal distribution with mean p, and variation o, /v N:

(@) = N(pg: 05) = N(py, Uy/\/ﬁ)-

We can now use this to make some very precise statements about the error in 7. Suppose,
for example, that we want to have 95% confidence on the possible values for y,. Since the
normal distribution has approximately 95% of its values within £2 standard deviations of
the mean, then we know that,

p{_Q&Sy_%SQ&

VN VN

If even higher confidence is wanted, then a wider range of error must be accepted. For ex-
ample, a 99% confidence interval occurs at 3 standard deviations for a normal distribution.
Thus,

} = 0.95.

o o
P{-3"YL <y— <3XL
{ VN TR RN
Unfortunately, in a practical situation, we cannot actually calculate the above error
estimates or confidence intervals because they depend on o, and we do not know o,. So, we
typically use an estimate of o,. In particular, an unbiased estimate of 05 is,

} = 0.99.

1 N
2 —\2
si=——Y (vi —)" (16.1)
VT N-14&

So, the usual practice is to replace o, by s, in the various error estimates. Note, this does
introduce additional uncertainty in the quality of the estimate and for small sample sizes
this could be significant.

16.2 Other Estimators and Standard Errors

16.2.1 Probability

Often, Monte Carlo simulations are used to estimate the probability of an event occurring.
For example, in the turbine blade example, we might be interested in the probability that
the hot metal temperature exceeds a critical value. Generically, suppose that the event of
interest is A. Then, an estimate of P {A} is the fraction of times the event A occurs out of
the total number of trials,

. Na

p(4) = N

where N4 is the number of times A occurred in the Monte Carlo simulation of sample size
N. p(A) is actually an unbiased estimate of P {A}. To see this, define a function I(A4;)

154 LECTURE 16. MONTE CARLO ERROR ESTIMATES

which equals 1 if event A occurred on the i-th trial, and equals zero if A did not occur. For
example, if the event A is defined as y > Yyumis, I(A;) would be defined as,

1 if i > Ylimit,
I(A) = 1(yi > Yuimit) = { 0 if zz < zizm;

Using this definition, the number of times which A occurred can be written,
Na=> I(A). (16.2)

Finding the expectation of N4 gives,
N
E[N4 = FE [Z I(AZ-)] ,
i=1
N
= Y EI(A)].
i=1

Since we assume that the Monte Carlo trials are drawn at random and independently from
each other, then E[I(A;)] = P {A}. Thus,

E[N4] = NP {A}.
Finally, using this result it is easy to show that,

_ E[N4]

Blp(4)] = =5

= P{A}.

We can also use Equation (16.2) in combination with the central limit theorem to show
that hatp(A) is normally distributed for large N with mean P {A} and standard error,

:VP&GG—PMB.
N

P

In-class Discussion 16.3 (Low Probability Estimation with Monte Carlo)

16.3. BOOTSTRAPPING 155

16.2.2 Variance

The variance of y is given the symbol, 05, and is defined as,

0% = Elly — 1)) (163)
As noted in Equation (16.1), an unbiased estimator of 05 is 312/’ that is:
21 _ 2
E[s,] = a,.
Note, you should try proving this result.
To quantify the uncertainty in this estimator, we would like to determine the standard

error,
_ 2 2\2]111/2
052 = {E [(sy - o,)]} .
Unfortunately, this standard error is not known for general distributions of y. However, if y
has a normal distribution, then,

e— (16.4)

Under the assumption of y being normally distributed, the distribution of 512! is also related
to the chi-squared distribution. Specifically, (N —1)s? /o7 has a chi-square distribution with
N —1 degrees of freedom. Note that the requirement that y be normally distributed is much
more restrictive than the requirements for the mean error estimates to hold. For the mean
error estimates, the standard error, oy = 0,/ VN, is exact regardless of the distribution of y.
The application of the central limit theorem which gives that ¥ is normally distributed only
requires that the number of samples is large but does constrain the distribution of y itself
(beyond requiring that f(y) is continuous).

16.2.3 Standard Deviation

Typically, the standard deviation of y is estimated using s,, i.e. the square root of the
variance estimator. This estimate, however, is biased,

Elsy] # oy.

The standard error for this estimate is only known exactly when y is normally distributed.

In that case,
12 oy

7 = {Ellsy =)} =

16.3 Bootstrapping

The standard errors and confidence intervals for a variety of estimators often rely upon
assumptions on the underlying output values, y. For example, the standard error for the
variance as given in Equation 16.4 requires the assumption that y is distributed normally.
Clearly, in most applications that will not be the case. In this situation, an alternative

156 LECTURE 16. MONTE CARLO ERROR ESTIMATES

method is required if confidence intervals are desired. One such method is known as boot-
strapping.

As an example, let’s consider the Monte Carlo estimation of the 50-percentile value of
a population. From a Monte Carlo sample, the 50-percentile value of the population could
be estimated as the median of the sample. If we wanted to determine the standard error
associated with using the median of sample size [NV as an estimate for the 50-percentile value,
one possibility would be to run multiple Monte Carlo’s of sample size N and estimate the
variability of the estimator directly. Suppose the a total of M Monte Carlo samples are run
(each of size N), then the total number of simulations would be M x N. Labelling 6; as the
estimator (i.e. the median) from the i-th Monte Carlo sample, the distribution of can be
determined and confidence intervals can be built using the M values of #;. This, however,
could be very expensive since M x N simulations are required.

Bootstrapping avoids the need for M x N simulations by resampling from a single Monte
Carlo simulation. After a single Monte Carlo simulation, /N simulations have been performed
and the results of the simulations are all equally likely to have occurred (since they were
drawn in a random, independent manner). A bootstrap resampling is performed by drawing
with uniform probability from this original Monte Carlo sample. Specifically, if we wanted
to generate M bootstrap samples of size N:

1. Perform an initial Monte Carlo sample of size N to produce y; with : =1 to N. From
this sample, calculate the desired estimator 6; = 0(y;).

2. Resample the values of y; assuming uniform probability of the events (i.e. each y; has
a probability of 1/N). Since the same event may occur a different number of times in
this resample and in the original sample, this will generate a new sample, 7;. From
this resample, calculate the desired estimator, 6; = 6(7;).

3. Perform the resampling in Step 2 a total of M — 1 times. In all, this will produce M
values of the estimator, #; through 6,,.

4. From the M values of 6;, confidence intervals can be determined.

Appendix A

Summary of Multi-Step Methods

This appendix contains a summary of the most common multi-step methods. Multi-stage
methods (i.e. Runge-Kutta methods) are discussed in Lecture 6.

Recall from Definition 3.1, the generic form of an s-step multi-step method is,

s s
Un—|—1 + Zaivn—l—lfz — Atz/Bifn—Hfz.
=0

=1

A multi-step method with Gy = 0 is known as an explicit method since in this case the new
value v™*! can be determined as an explicit function of known values (i.e. from v* and f;
with 4 < n). A multi-step method with 5y # 0 is known as an implicit method since in

this case the new value v"*! is an implicit function of itself through the forcing function,
f’n+1 — f(,Un+1, tn+1)‘

A.1 Adams-Bashforth Methods

Adams-Bashforth methods are explicit methods of the form,
Un—l—l — " = Atz,@ifn—i—l_i.
i=1

Thus, the basic time derivative approximation remains the same for all p (i.e. du/dt is
approximated by (v"*! —v™)/Dt) and the higher-order accuracy is achieved by using more
values of f. The coefficients for the first through fourth order methods are given in Table A.1.
The first-order Adams-Bashforth is forward Euler.

The stability boundary for these methods are shown in Figure A.1. As the order of
accuracy increases, the stability regions become smaller. Note, this is the opposite of Runge-
Kutta methods for which the size of the stability regions increases with increased accuracy
(see Lecture 6).

157

158 APPENDIX A. MULTI-STEP SUMMARY

A.2 Adams-Moulton Methods

Adams-Moulton methods are implicit methods of the form,
vn+1 — " = Atiﬁifrﬂ—lfi.
i=0

These methods use the same time derivative approximation as the Adams-Bashforth meth-
ods, however they include the n + 1 value of f. The coefficients for the first through fourth
order methods are given in Table A.2.

The stability boundary for these methods are shown in Figure A.2. While the stability
regions are larger than the Adams-Bashforth methods, for p > 2 the methods have bounded
stability regions. Thus, they will not be appropriate for stiff problems.

A.3 Backward Differentiation Methods

Backwards differentiation methods were described in detail in Section 5.4. For completeness,
we have included much of the same information in this appendix. Backwards differentiation
methods are implicit methods of the form,

,Un—l—l + ivn—l—l—i — Atﬁ()fn_H.

=1

The coefficients for the first through fourth order methods are given in Table A.3.

The stability boundary for these methods are shown in Figure A.3. As can be seen, all
of these methods are stable everywhere on the negative real axis, and are mostly stable in
the left-half plane in general. Even up to p = 4, the stability regions are unbounded. Thus,
backwards differentiation work well for stiff problems in which stong damping is present.

A.3. BACKWARD DIFFERENTIATION METHODS

159

p 51 /32 53 /54
1 1
3 1
2 5 3
23 16 5
3 % "1 1
4 85 _59 3T _9

24

24

24

24

Table A.1: Coefficients for Adams-Bashforth methods (these methods are explicit so 8y = 0).
Note: the p = 1 method is the forward Euler method.

p Bo B P2 Bs
1 1
1 1
2 2 2
5 8 _1
3 12 12 12
4 2 1 _5 1
24 24 24 24

Table A.2: Coefficients for Adams-Moulton methods.
backward Euler method, and the p = 2 method is the Trapezoidal method.

Note: the p = 1 method is the

p o ay a3 o P
1 -1 1
4 1 2
2 3 3 3
3 188 9 2 6
1 11 11 11
4 48 36 _16 3 12
25 25 25 25 25

Table A.3: Coefficients for backward differentiation methods. Note: the p = 1 method is the

backward Euler method.

160 APPENDIX A. MULTI-STEP SUMMARY

0.8

0.6

0.4

0.2

Imag A At
o
T

Figure A.1: Adams-Bashforth stability regions for p = 1 through p = 4 methods. Note:
interior of contours is stable region.

Imag A At
o
T
pel
1
£y
¥

6 I I I I))
-8 -6 -4 -2 0 2 4

Real L At

Figure A.2: Adams-Moulton stability regions for p = 1 through p = 4 methods. Note: p =1
is stable outside of contour, the p = 2 integrator is stable in the left-half plane, and p > 3
are stable inside their respective contours.

A.3. BACKWARD DIFFERENTIATION METHODS 161

10 T

Imag A At
o
AN

2

4}

-6}

-8}

-10 ; i L
-5 0 5 10 15
Real LAt

Figure A.3: Backwards differentiation stability regions for p = 1 through p = 4 methods.
Note: interior of contours is unstable region.

162 APPENDIX A. MULTI-STEP SUMMARY

Appendix B

Review of Probability and Statistics

The purpose of this appendix is to provide a quick review of some basic concepts in proba-
bility.

B.1 Outcomes and Events

Consider an experiment or activity which will be performed several times. Each time the
experiment is performed, the outcome (can be recorded. An event A is set of outcomes
for which certain conditions have been met. An elementary event consists of only a single
outcome.

Example: Consider the inspection of rotor blades in the turbine of a jet engine.
Suppose that the total number of rotor blades in the engine is N. The outcome of a single
inspection is recorded as the number of blades that must be replaced due to damage. Thus,
the outcomes are the set of non-negative integers, {0,1,2,..., N}. If the number of blades
replaced in a single engine is greater than some number, say 5, than this may indicate more
significant damage has occurred and the engine will need to be inspected more thoroughly.
In this situation, we would be interested in the event where the number of replaced blades is
{6,7,8,..., N}. This is not an elementary event since it consists of more than one outcome.
However, we would also be interested in the situation where no blades are replaced. In this
case, the event consists of a single outcome (i.e. 0) and therefore is an elementary event.

B.2 The Meaning of Probability

Given an event, A, the probability of the event is P { A}. Probabilities are assumed to satisfy
the following properties:

e P{A} > 0.
e If and only if the event is certain to occur, then P {A} = 1.

e Given two mutually exclusive events, A and B, then P {A+ B} = P{A} + P {B}.

163

164 APPENDIX B. PROBABILITY REVIEW

B.3 Random Variables

The utility of probability theory is in describing the behavior of random variables. In the
simplest terms, a random variable can be defined as a variable or parameter whose values
depend on the particular outcome of the experimental trial. Thus, random variables will
be a function of the outcome. We will use boldface letters to denote a random variable, for
example, x. It is understood that the value of x depends on the outcome which has occurred,
ie. x =x(().

Example: We will continue with the rotor blade inspection example. A very simple
example of a random variable would be the number of blades which are replaced for a
particular inspection. In this case, the random variable is just the outcome itself! Specifically,

N(¢) = ¢.

Now, let’s try something a little more complicated. The airline is concerned about the cost
of the inspection and repair of its engines. Not including the cost of replacing any blades,
simply performing the inspection costs the airlines C; dollars due to employee salaries (labor).
The cost to replace a single blade is Cg (including the cost of the new blade and the labor).
Also, if the number of replacements is greater than 5, the cost rises dramatically since a more
thorough inspection must be performed. We will model this as an increment C'p. Since the
cost of the inspection and repair depends on the outcome of the inspection (and the outcome
is random), clearly the cost of the inspection is a random variable. Specifically,

C() =

Cr + Cg(, for 0 < (<5,
CI+CB§+CD, fOI‘6§CSN

B.4 Probability density functions (PDF)

We are often concerned with probabilities of parameters which are real numbers (i.e. which
have infinitely many values). In this case, a probability density function (PDF) is used to
describe the probability of the parameter being in some range. In particular, given a random
variable x, the probability that a < x < b is,

P{aﬁxﬁb}:/abf(x)dx,

where f(z) is the PDF of x.

A common (and probably the simplest) distribution is the uniform distribution. In this
case, we assume the probability density is constant within some range and zero outside of
this range,

ﬁ fora <z <b,

0, otherwise.

Uniform: f(z) = {

Other distribution types are described in Section B.9

B.5. EXPECTED VALUE AND MEAN 165

B.5 Expected value and mean

Given the PDF, f(z) of a random variable x, the expectated value is defined as,

E{x} = /_;ooxf(x) dz.

The expected value of x is also known as the mean value. We will also use the symbol p,
for the expected value of x.

B.6 Variance and standard deviation

The variance of x is defined as,
2 +oo 2
o= [(o=) (@) de.
—00
The value o, is known as the standard deviation of x. The variance is a measure of the

variability in x about its mean value. A frequently used relationship exists between the
mean and variance,

ol=F {x2} — 1.
Try proving this!

B.7 Cumulative distribution functions (CDF)

Cumulative distribution function (CDF) of x is defined as the probability that x < z.

Specifically,
F(z)=P{x<z}.

From the basic assumptions of probability, it can be shown that F(—oc) = 0 (i.e. the
probability of x becoming infinite is zero) and F(+00) = 1 (i.e. the probability of x being
less than infinity is one). The CDF and PDF of x are related as follows,

Fla) = / " f@) do

—0o0

Thus, we can show,

Furthermore, this implies that

B.8 Percentiles

The u percentile of x is the smallest number x, such that,
u=P{x<z,} = F(zy).

Note, since u is a probability, its range is 0 < u < 1.

166 APPENDIX B. PROBABILITY REVIEW

B.9 Common distribution types

B.9.1 Normal distribution
The normal (or Gaussian) distribution is,
1

f(l‘)=%m

We will use the common notation x = N(u;0) to indicate that x is a normally-distributed
random variable with mean p and standard deviation o.

o () /203

