Lecture 9

Matrix Stability Analysis of Finite
Difference Methods

In this lecture, we a matrix approach to analyzing the eigenvalue stability of PDE dis-
cretizations. This method builds upon our understanding of eigenvalue stability for systems
of ODE’s.

As we saw in Section 8.1, finite difference (or finite volume) approximations can poten-
tially be written in a semi-discrete form as,
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While there are some PDE discretization methods that cannot be written in that form, the
majority can be. So, we will take the semi-discrete Equation (9.1) as our starting point.
Note: the term semi-discrete is used to signify that the PDE has only been discretized in
space.

Let U(t) be the exact solution to the semi-discrete equation. Then, consider perturbation
e(t) to the exact solution such that the perturbed solution, V' (¢), is:

V(t) = U(t) + e(t).

The questions that we wish to resolve are: (1) can the perturbation e(t) grow in time for
the semi-discrete problem, and (2) what the stability limits are on the timestep for a chosen
time integration method.

First, we substitute V (¢) into Equation (9.1),
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Thus, the perturbation must satisfy the homogeneous equation, e; = Ae. Having studied the
behavior of linear system of equations in Section 4.2, we know that e(¢) will grow unbounded
as t — oo if the real parts of the eigenvalues of A are positive.
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The problem is that determining the eigenvalues of A can be non-trivial. In fact, for a
general problem finding the eigenvalues of A can be about as hard as solving the specific
problem. So, while the matrix stability method is quite general, it can also require a lot of
time to perform. Still, the matrix stability method is an indispensible part of the numerical
analysis toolkit.

As we saw in the eigenvalue analysis of ODE integration methods, the integration method
must be stable for all eigenvalues of the given problem. One manner that we can determine
whether the integrator is stable is by plotting the eigenvalues scaled by the timestep in the
complex AAt plane and overlaying the stability region for the desired ODE integrator. In
fact, we have already plotted the eigenvalues for one-dimensional diffusion using a central
difference discretization in Example 5.1. Then, At can be adjusted to attempt to bring all
eigenvalues into the stability region for the desired ODE integrator.

Example 9.1 (Matrix Stability of FTCS for 1-d convection) In Ezample 8.1, we used
a forward time, central space (FTCS) discretization for 1-d convection,

yrtt —pyn
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Since this method is explicit, the matriz A does not need to be constructed directly, rather
Equation (9.2) can be used to find the new values of U at each point i. The Matlab script
given in Erxample 8.1 does exactly that. However, if we are interested in calculating the
eirgenvalues to analyze the eigenvalue stability, then the A matriz is required. The following
script does ezactly that (i.e. calculates A, determines the eigenvalues of A, and then plots
the eigenvalues scaled by At overlayed with the forward Euler stability region). The script
can set either the inflow/outflow boundary conditions described in Example 8.1, or can set
periodic boundary conditions. We will look at the eigenvalues of both cases.

% This Matlab script calculates the eigenvalues of

% the one-dimensional convection equation discretized by
% finite differences. The discretization uses central

% differences in space and forward Euler in time.

h

% Periodic bcs are set if periodic_flag ==

h

% Otherwise, an inflow (dirichlet) bc is set and at

% the outflow a one-sided (backwards) difference is used.

b

clear all;
periodic_flag = 1;
% Set-up grid

xL = -4;
xR = 4;



Nx = 21; % number of points
x = linspace(xL,xR,Nx);

% Calculate cell size in control volumes (assumed equal)
dx = x(2) - x(1);

% Set velocity
u=1;

% Set timestep
CFL = 1;
dt = CFLxdx/abs(u);

% Set bc state at left (assumes u>0)
UL = exp(-xL"2);

% Allocate matrix to hold stiffness matrix (A).
%
A = zeros(Nx-1,Nx-1);

% Construct A except for first and last row
for i = 2:Nx-2,

A(i,i-1) = u/(2*xdx);
A(i,i+1) = -u/(2*dx);
end

if (periodic_flag == 1), % Periodic bcs

Al ,2 ) = -u/(2xdx);
A1 ,Nx-1) = u/(2xdx);
A(Nx-1,1 ) = -u/(2%dx);
A(Nx-1,Nx-2) = u/(2%dx);

else % non-periodic bc’s

% At the first interior node, the i-1 value is known (UL).
% So, only the i+l location needs to be set in A.
A(1,2) = -u/(2%dx);

% Outflow boundary uses backward difference
A(Nx-1,Nx-2) = u/dx;
A(Nx-1,Nx-1) = -u/dx;

end
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% Calculate eigenvalues of A
lambda = eig(A);

% Plot lambdaxdt
plot(lambda*dt,’*’);
xlabel(’Real \lambda\Delta t’);
ylabel(’Imag \lambda\Delta t’);

% Overlay Forward Euler stability region
th = linspace(0,2%pi,101);

hold on;

plot(-1 + sin(th),cos(th));

hold off;

axis(’equal’);

grid on;

Figure 9.1 shows a plot of AAt for a CFL set to one. Recall that for this one-dimensional
problem, the CFL number was defined as,

lu| At
Ax

In the inflow/outflow boundary condition case (shown in Figure 9.1 the eigenvalues lay
slightly inside the negative real half-plane. As they move away from the origin, they ap-
proach the tmaginary azris at +i. The periodic boundary conditions give purely imaginary
eigenvalues but these also approach +i as the move away from the origin. Note that the
periodic boundary conditions actually give a zero eigenvalue so that the matrixz A is actually
singular (Why is this?). Regardless what we see is that for a CFL = 1, some MAt exist which
are outside of the forward Euler stability region. We could try to lower the timestep to bring
all of the NAt into the stability region, however that will prove to be practically impossible
since the extreme eigenvalues approach +i (i.e. they are purely imaginary). Thus, no finite
value of At exists for which these eigenvalues can be brought inside the circular stability
region of the forward Euler method (i.e. the FTCS is unstable for convection).

CFL =

In-class Discussion 9.1 (Behavior of FTCS eigenvalues with decreased Az) We will
discuss Figure 9.2.
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(a) Dirichlet inflow and upwinded outflow (b) Periodic boundary conditions

Figure 9.1: AAt distribution for one-dimensional convection example using two different
boundary conditions. Note: At set such that CFL = 1.

In-class Discussion 9.2 (Behavior of FTCS eigenvalues with diffusion) We will dis-
cuss Figure 9.3.

Though the eigenvalues of A typically require numerical techniques for the general prob-
lem, a special case of practical interest occurs when the matrix is ‘periodic’. That is, the
column entries shift a column every row. Thus, the matrix has the form,

a; ag a3 ... an

any a1 Qa2 ... GaGN-—1
A= o

o Qa3 Qa4 ... aq

This type of matrix is known as a circulant matrix. Circulant matrices have eigenvalues
given by,

Ao = a;et?™0U%  for n=0,1,...,N—1 (9.3)
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Figure 9.2: Effect of Az on AAt distribution for one-dimensional convection example using
Dirichlet inflow and upwinded outflow conditions. Note: At set such that CFL = 1.

Example 9.2 As we saw in Example 9.1, when periodic boundary conditions are assumed,
the central space discretization of one-dimensional convection gives purely imaginary eigen-
values, and when scaled by a timestep for which the CFL number is one, the eigenvalues
stretch along the axis until &i. Since for a convection problem with constant velocity and pe-
riodic boundary conditions gives a circulant matriz, we can use Equation (9.3) to determine
the eigenvalues analytically. We begin by finding the coefficients, a;. For a central space
discretization, we find,

u go— U
oAz N T 2Az’
Then, substituting these a; into Equation (9.3) gives,

ay = — and for all other j, a; = 0.
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Since €'*™ =1 (because n is an integer), then,

U orn —ior
)‘n - _ 6127TN+ e 127 5

Multiplying by the timestep,
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Figure 9.3: Effect of viscosity on AAt distribution for one-dimensional convection-diffusion

example using periodic boundary conditions.Note: At set such that CFL = 1.

As observed in Example 9.1, the eigenvalues are purely imaginary and will extend to ¢ when
CFL = |u|At/Ax = 1.



