Lecture 8

Finite Difference Methods for
Convection-Diffusion

In this lecture, we introduce the finite difference method for the solution of PDE’s. We will
limit our discussion of PDE’s to convection-diffusion. Recall from Equation 7.6 that the
convection equation is,

ou ou oUu

E + Ua + ?}% =
where U is the scalar quantity which is convected. Adding diffusion to this equation gives
the convection-diffusion equation,

ot Vor "oy M\ oz T B2)

0,

(8.1)

where p is the diffusion coefficient.

8.1 Finite Difference Approximations

The finite difference approximation of a PDE is constructed using a grid over the domain
of interest. The finite difference approximations are easiest to derive using a structured,
rectangular as shown in Figure 8.1. For a finite difference approximation of a PDE, the
solution is sought at the nodes of the mesh. We use the notation that U; ; is the value of U
at the (7, 7) node.

A common finite difference approximation of OU /Jz at node (i, j) is,

1
' I égmUi,j = m (Ui+1,j - Ui—l,j) . (82)

1,J

8_U
0z

The finite difference operator &9, is called a central difference operator. Finite difference
approximations can also be one-sided. For example, a backward difference approximation is,

ou

ox

1

Ui,j - Ui—l,j) ’ (83)

1,

63

64 LECTURE 8. FINITE VOLUME METHOD

j+1e 'S ' ' Az 'y
Ay
j e ® ® ® ®
j—1e ® ® ® ®
)
j—2e ® ® ® °
1—2 1—1 1 1+1 1+ 2

Figure 8.1: Two-dimensional structured mesh for finite difference approximations.

and a forward difference approximation is,

ou

oz

1

(Uis1,; — Uij), (8.4)

i’j
A very common finite difference approximation for a second derivative is,

0*U

012

1
I~ 55Ui,j = A—$2 (Ui+1,j — 2Ui,j + Ui—l,j) . (85)

1]

As in the first derivative case, since this derivative approximation uses both i 4 1 values, it
is known as a central difference approximation of the second derivative. This approximation
can be motivated by approximating the second derivatives as a difference of first derivatives,

o0?U . 0U/oz(z + Az/2) — 0U /0x(x — Ax/2)
a2 = A, Az
_ g 1 |U(z+Az) -U(z) U(z)-U(z - Axz)
T Aro Az Ax Ax
— lim — [U(z + Az) — 2U(2) + U(x — Az)].

Az—0 Ag2

To approximate the convection-diffusion equation we can combine various finite difference
derivative approximations. For example, consider the one-dimensional convection-diffusion
equation,

oUu ou 0°U
Approximating this using central differences for all derivatives, the convection-diffusion equa-
tion at node ¢ can be approximated as,

dU;
dt

8.1. FINITE DIFFERENCE APPROXIMATIONS 65

This is an ordinary differential equation for U; which is coupled to the nodal values at U;.
To make this a fully discrete approximation, we need to discretize in time. To do this, we
could apply any of the ODE integration methods that we discussed previously. For example,
the simple forward Euler integration method would give,

yrtl — yn
ZTtZ + Ul o, U = pud2U?. (8.7)

In finite differences, we often make use of the spatial stencil of a discretization. The
spatial stencil is simply the subset of nodes which are used to discretize the problem in space.
The central difference approximation in Equation 8.6 gives a three-point spatial stencil since
dU/dt at node i depends on three nodal values of U (including itself), specifically U; 1, U;
and U;y1. To illustrate this, note that Equation (8.6) can be written as,

dU;
d—tZ = ai—lUifl —+ aliUz' + a’i-HU’H—l
where
N
a;—1 = QACC + A.CL'27
B u
a; = —Qm,
o _ui o p
Ayl = _2Ax Ax2’

We can also place all of the nodal states into a vector,
U= (U17 U27) Ui—h Ui7 Ui+17 R UNm—la UNz)Ta

where N, is the total number of points in the z-direction. Then, the finite difference ap-
proximation of convection-diffusion can be written in the following form,
aUu

—=A b .
7 U+ b, (8.8)

where b will contain boundary condition related data (boundary conditions are discussed in
Section 8.2) and the matrix A is,

Ay A A ... A,

Agr Ase Agz ... A,
A=]]] . i

Anzg Any2 Ang3 - Anyn,

Note that row 7 of this matrix contains the coefficients of the nodal values for the ODE
governing node ¢. Except for rows requiring boundary condition data, the values of A;; are
related to the coefficients a;+; and a;, specifically,

Ai,i—l = Gi—1, Ai,i = a, Ai,i—i—l = Gj+1,

and all other entries in row 7 are zero.

66 LECTURE 8. FINITE VOLUME METHOD

In-class Discussion 8.1 (Finite Volume vs. Finite Difference Discretizations)

8.2 Boundary Conditions

In this section, we discuss the implementation of finite difference methods at boundaries.
This discussion is not meant to be comprehensive, as the issues are many and often subtle.

8.2.1 Dirichlet Boundary Conditions

A Dirichlet boundary condition is one in which the state is specified at the boundary. For
example, in a heat transfer problem, the temperature might be known at the boundary.
Dirichlet boundary conditions can be implemented in a relatively straightforward manner.
For example, suppose that we are solving a one-dimensional convection-diffusion problem
and we want the value of U at ¢ = 1, to be Ujpes,

Ul = Uinlet .

To implement this, we fix U; = Uyy,e; and apply the finite difference discretization only over
the interior of the computational domain accounting for the known value of U; at any place
where the interior discretization depends on it. For example, at the first interior node (i.e.
i = 2), the central difference discretization of 1-D convection-diffusion gives,

dUs Us—U = Us—2U0,+U

& T ToAr TP AL

Accounting for the known value of U, this becomes,

dU2 U3 - Uinlet _ NU3 - 2U2 + Uinlet

I v v (&)

In terms of the vector notation, when a Dirichlet boundary condition is applied we usually
remove that state from the vector U. So, in the situation where U; is known, the state vector
is defined as,

U= Us,Us, ..., Ui_1,Ui,Uis1, ..., Un,—1,Un,)",

8.2. BOUNDARY CONDITIONS 67
The b vector then will contain the contributions from the known boundary values. For
example, by re-arranging Equation (8.9), the first row of b contains,

—u Uinlet + Uinlet
oAz TP AR

b
Since Ujper does not enter any of the other node’s stencils, the remaining rows of b will be

zero (unless the are altered by the other boundary). Note, the first row of A is,

I Ug ©
e A = — B
Ax?’ 12 2Azx + Ax?’

Al,l - —2

and A;; =0 for j > 2.

8.2.2 Neumann Boundary Conditions

Notes will be coming on this issue.

Example 8.1 (Finite Difference Method applied to 1-D Convection) In this ezam-
ple, we apply the central difference approrimation to solve 1-D convection, i.e.,

oU U

We will solve a problem that is nearly the same as that in Example 7.4. Specifically, the
initial condition s ,

Ug(z) = e ™.
We let the velocity, w = 1. Instead of solving a problem with periodicity, we enforce the
inflow boundary (which is at x = x, since u > 0),

Ut,z1) = e L.

Physically, since u > 0, no boundary condition is needed at x = xp (i.e. the scalar just
convects out the domain at this location). But, the central difference discretization cannot
be applied at the outlet node (i.e. at i = N,) because it would require the N + 1 nodal value
(which does not ezist). To handle this problem, we switch the discretization at i = Ny to a
one-sided backwards difference formula.

% This Matlab script solves the one-dimensional convection

% equation using a finite difference algorithm. The

% discretization uses central differences in space and forward

% Euler in time. An inflow bc is set and at the outflow a

% one-sided (backwards) difference is used. The initial condition
% is a Gaussian distribution.

h

clear all;

68 LECTURE 8. FINITE VOLUME METHOD

% Set-up grid

xL = -4;
xR = 4;
Nx = 51; % number of control volumes

x = linspace(xL,xR,Nx);

% Calculate cell size in control volumes (assumed equal)
dx = x(2) - x(1);

% Set velocity
u=1;

% Set final time
tfinal = 100;

% Set timestep
CFL = 0.1;
dt = CFLxdx/abs(u);

% Set initial condition
U = exp(-x.72);
t = 0;

% Set bc state at left (assumes u>0)
UL = exp(-xL~2);

% Loop until t > tfinal
while (t < tfimal),

% Copy old state vector
U0 = U;

%» Inflow boundary
U(1) = UL;

% Interior nodes
for i = 2:Nx-1,

U(i) = U0(1i) - dt*x(U0(i+1)-U0(i-1))/(2*dx);
end

% Outflow boundary uses backward difference
i = Nx;
U(i) = U0(i) - dt*(U0(i)-U0(i-1))/(dx);

8.3. TRUNCATION ERROR ANALYSIS

% Increment time
t =1t + dt;

% Plot current solution
plot(x,U,’*?);

xlabel(’x’); ylabel(’U’);
title(sprintf(’time = %f\n’,t));
axis([xL, xR, -0.5, 1.5]);

grid on;

drawnow;

end

8.3 Truncation Error Analysis

These notes are still to come.

