Lecture 7

Conservation Laws and the Finite
Volume Method

7.1 Conservation Laws

In most engineering applications, the physical system is governed by a set of conservation
laws. For example, in gas dynamics, the conservation of mass, momentum, and energy are
applied to the gas. These conservation laws are often written in integral form for a fixed
physical domain. Suppose we have a two-dimensional physical domain, €2, with the boundary
of the domain, §{2. Then, the canonical conservation equation assuming that the physical
domain is fixed is of the form,

Ghvias [ [Fwis o] ads= [ sw.nas (7.1)

where U is the conserved state, F' and G are the flux of the conserved state in the z and y
directions, 7 is the outward pointing unit normal on the boundary of the domain, and S is
a source term.

This conservation law can be written as a partial differential equation by applying the
divergence theorem which states that,

/m [Fi +Gj -ﬁds:/Q@i ‘2(;) dA. (7.2)

Thus, Equation 7.1 becomes,

d g hrd - _
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dA + /<a_F+@> dA:/QSdA,
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Thus, since this last equation would remain valid for any arbitrary domain, €2, this means
that the integrand must be zero everywhere, or, equivalently,

ou OF 0G
— 4+ —4+—=—=05 7.3
ot oz oy (7.3)
Equation 7.3 is the conservation law written as a partial differential equation.

Example 7.1 (Conservation of Mass for a Compressible Fluid) An example of a con-
servation law is the conservation of mass for a compressible fluid. Let the fluid density be
p(z,y,t) and the fluid x and y velocity components be u(z,y,t) and v(z,y,t), respectively.
Then, the conservation of mass for the fluid is,

%/ﬂpdA+/m [puz+pvﬂ -nnds = 0.

In terms of the canonical form,

U = p,
F = pu,
G = pv,
S = 0.

Example 7.2 (The Euler Equations for a Compressible Fluid) Often, multiple con-
servation laws are of interest. In this case, U is a vector of conserved states. Furthermore,
F, G, and S are vectors. As an example, the Euler equations for a compressible fluid in
two-dimensions are the combination of conservation of mass, r-momentum, y-momentum,
and energy. In this case,

p gu pu

v=| " r=| " P G = ’OQUU S=0.
pv pUv pv°+p
pE puH pvH

The first row of these vectors represents the conservation of mass (see Example 7.1 for more).
The second and third row represent conservation of x and y momentum, respectively. And,
the fourth row represents conservation of energy. Note that in addition to the fluid density
(p) and the x and y velocity components (u and v), the other quantities in these equations
are:

p = static pressure,
E = total energy,
H = total enthalpy.

The total energy and total enthalpy are related by,

H=E+L
P
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This system of equations is not quite complete, however, since the number of equations does
not equal the number of dependent variables in the equations. In particular, note that we
have given five equations thus far (the four conservation equations and the relationship of H
to E) while the number of dependent variables is siz (i.e. p, u, v, p, E, and H). The final
equation is an equation of state. Often, we assume an ideal gas and use the ideal gas law.
In terms of the dependent variables we have introduced, the ideal gas law can be written as,

p=(r=1) [pE — ol +47)]. (7.4)

where 7y is the ratio of specific heats (for air, v =~ 1.4). Many of you may be more familiar
with the ideal gas law in the form, p = pRT where R is the gas constant and T is the
temperature. Equation 7.4 is (in fact) equivalent to p = pRT but Equation 7.4 is used since
p = pRT introduces a new dependent variable (i.e. the temperature) and would therefore
require yet another state equation to complete the system.

7.2 Convection

In many applications, especially those in fluid dynamics, convection is the dominant physical
transport mechanism over much of the domain of interest. While diffusion is always present,
often its affects are smaller except in limited regions (often near solid boundaries where
boundary layers form due to the combined effects of diffusion and convection).

In this section, we will derive the convection equation using the conservation law as given
in Equation 7.1. Specifically, let U be the 'conserved’ scalar quantity and let the fluxes be
given by,

F =uU, G = U, S =0, (7.5)

where u(z,y,t) and v(z,y,t) are known velocity components. Note, a non-zero source term
could be included, but for simplicity is assumed to be zero. As a PDE, this scalar conservation
law is,

ou 0 0
§+a_$(UU)+@(UU)_O

This equation can be manipulated by expanding the x and y derivatives into,

8_U+ ou oUu _ 8_u+8_v
ot 0w oy or 0Oy)

Often a reasonable assumption is that the velocity field is divergence free such that du/0x +
Ov/0y = 0. In this case, we arrive at what is commonly referred to as the convection
equation,
oUu oUu ou
E + ua—m + U@ =
Physically, this equation states that following along the streamwise direction (i.e. convecting
with the velocity), the quantity U does not change.
In developing numerical methods for convection-dominated problems, we will often rely
on insight that can be gained from the convection equation for the specific case when the

0. (7.6)
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velocity field is a constant value, i.e. u(x,y,t) = v and v(z,y,t) = v. In this situation, the
solution to Equation 7.6 has the following form,

U(z,y,t) =Up(&,mn) where &=z —ut, n=1y—ut, (7.7)

where Up(z,y) is the distribution of U at time ¢ = 0. By substitution, we can confirm that
this indeed is a solution of Equation 7.6,

oUu ou oUu 0 0 0
o TV, T Vay an(fj n) + Ua—mUo(fa n) + Ua—yUO(faﬂ)
_ UNOE_ Uydy  (OUy0E  Uydn) | (UpdE . Uy
O£ Ot On ot 0¢ Ox  On O o0& 0y  On Oy
The partial derivatives of £ and n are,
0 S
at 8:5_1’ ay_o’
on _ on o On _
TR M Wil
Upon substitution of these partial derivatives,
a—U—i-ua—U—i-va—U = —u%—l-—vaUO-i-uaUO -I-vaUO
ot oz oy o€ on o€ on’

= 0.

Thus, U(x,y,t) = Us(x — ut,y — vt) is a solution to the convection equation.

Example 7.3 (Two-dimensional Convection) 7o illustrate the behavior of the 2-D con-
vection equation, we consider a specific problem. Suppose that the velocity is at 45 degrees
with respect to the x-axis such that,

Also, suppose that the initial distribution of U 1is,
Uo(x,y) _ e—z2—20y2_

In Figure 7.1, the initial distribution of U is shown (i.e. att = 0) as well as the distribution
of U att = 1. Clearly, the contours have moved along the 45 degree line (shown as a dashed
line in the figure). Initially, the contours are centered at the origin and then att =1 they are
centered at xt =y = 1. A plot of U along the dashed line is shown in Figure 7.2. Since this
line is tangent to the convection direction, the distribution of U convects without changing
shape as t increases.
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Figure 7.1: Distribution of U at ¢ = 0 and at ¢ = 1 for a convection problem with velocities
u=uv=1.

7.3 Finite Volume Method for Convection

In this section, we will discuss the finite volume method. Our initial focus will be on con-
vection and we will assume that the velocity field is divergence free. Thus, the integral
conservation law (i.e. Equation 7.1) with fluxes given by Equation 7.5 is completely equiva-
lent to the PDE for convection (i.e. Equation 7.6).

7.3.1 One-Dimensional Convection

In one-dimensional problems, the assumption that the velocity is divergence free, i.e. du/0x =
0, forces the velocity to be constant with respect to z (though v could change with ).

The basis of the finite volume method is the integral convervation law. The essential idea
is to divide the domain into many control volumes and approximate the integral conservation
law on each of the control volumes. For example, as shown in Figure 7.3, cell 7 lies between
the points at T 1 and x; L. Note that the points do not have to be equally-spaced.

The one-dimensional form of Equation 7.1 is

e+ ), - FO),, = [ S@ 1 d 7.8
G| Ut PO, - FO),, = [ " 5.1 dz. (78)
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Figure 7.2: Distribution of U along y = z at ¢ = 0 and at ¢ = 1 for a convection problem
with velocities u = v = 1.

Figure 7.3: Mesh and notation for one-dimensional finite volume method.

Thus, applying this to control volume ¢ (and recalling that S = 0 for convection) gives,

. xZ.
z+7 1,—%

d [Tl
2 — = . .
il Ut PO, - PO, =0 (79)

Next, we define the mean value of U in control volume ¢ as,

1 Tyl
U= — *Udz, where Az;=x;,1—12, 1.
A.’L’i z,_1 2 2
2

Then, Equation 7.9 becomes,

au;
Aa:iﬁ + F(U)|wi+% — F(U)|wi,% =0. (7.10)
At this point, no approximations have been made thus Equation 7.10 is exact. Now, we make
the first approximation. Specifically, we assume that the solution in each control volume is
constant,
Uz, t) =Ui(t) for =z 1 <z <z

K3

Thus, the finite volume approximation will be piecewise constant as shown in Figure 7.4.
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Figure 7.4: Piecewise constant solution for one-dimensional finite volume method.

With this assumed form of the solution, the next issue is to determine the flux at i + % at
a time ¢. This can be done with the knowledge that the solution convects with the velocity
u(t). Thus, for the initial instant after ¢ (which we denote as t* = ¢ + ¢ where € is an
infinitessimal, positive number):

LS
2

U ifu(t)>0

The flux can be calculated directly from this value of U,

[ u®U(E)  ifut) >0
B { u(t)Uspr(t) if u(t) <0

An alternative way to write this flux which is valid regardless of the sign of u(t) is,

Flayy3,%) = gu(t) Wen () + U(0)] — 5l Uint) ~ U] (7.10)

3 7
These fluxes, which use the upstream value of U to determine the flux. are known as an
‘upwind’ flux.

The final step in arriving at a full-discrete approximation for one-dimensional convection
is to discretize Equation 7.10 in time. This can be done choosing any of the ODE integration
methods we studied previously. For simplicity, we choose the forward Euler method so that
the final fully-discrete form of the finite volume method is,

Az; 7At +Fi+% _Fi—% =0, (7.12)
where we use the notation,
Fi+§:§“ ( i+1+Ui)_§|u|( z'+1_Ui)' (7.13)

Example 7.4 (Finite Volume Method applied to 1-D Convection) The following Mat-
lab script solves the one-dimensional convection equation using the finite volume algorithm
given by Fquation 7.12 and 7.13. The problem is assumed to be periodic so that whatever
leaves the domain at x = xg re-enters it at x = xr,.
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% Script: convectid.m
clear all;

% Set-up grid

xL = -4;
xR = 4;
Nx = 40; % number of control volumes

x = linspace(xL,xR,Nx+1);

% Calculate midpoint values of x in each control volume
xmid = 0.5%(x(1:Nx) + x(2:Nx+1));

% Calculate cell size in control volumes (assumed equal)
dx = x(2) - x(1);

% Set velocity
u-=1;

% Set final time
tfinal = 1;

% Set timestep
CFL = 0.5;
dt = CFLx*dx/abs(u);

% Set initial condition to U0 = exp(-x~2)

% Note: technically, we should average the initial

% distribution in each cell but I chose to just set

% the value of U in each control volume to the midpoint
% value of UO.

U
t

exp (-xmid."2) ;
0;

% Loop until t > tfinal
while (t < tfinal),

Ubc = [U(Nx), U, U(1)]; % This enforces the periodic bc
% Calculate the flux at each interface

F= 0.5% u *( Ubc(2:Nx+2) + Ubc(1:Nx+1))
- 0.5%abs(u)*( Ubc(2:Nx+2) - Ubc(1l:Nx+1));
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% Calculate residual in each cell
R = F(2:Nx+1) - F(1:Nx);

% Forward Euler step
U =10 - (dt/dx)+*R;

% Increment time
t =1t + dt;

% Plot current solution
stairs(x,[U, U(QNx)]);
axis([xL, xR, -0.5, 1.5]);
grid on;

drawnow;

end

7.3.2 Two-Dimensional Convection

o7

The finite volume discretization can be extended to two-dimensional problems. Suppose the
physical domain is divided into a set of triangular control volumes, as shown in Figure 7.5.

Application of Equation 7.1 to control volume A gives,

2

Figure 7.5: Triangular mesh and notation for finite volume method.

d
@ A H(U.7) ds =
dt/QAUd + [, HU.) ds /

Q4

S(U,t) dA,

(7.14)
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where H (U, i) is the flux normal to the face,

H(U, ) = [F(U)i + GU)j] - 7. (7.15)
As in the one-dimensional case, we define the cell average,
Uy = 1 UdA
A= AA Qu )

where A4 is the area of control volume A. Thus, Equation 7.14 becomes,

dUy
LA [ HWU R ds:/ S(U, 1) dA.
A dt 004 ( ) Q4 ( )
In the case of convection, we again assume S = 0. Also, we expand the surface integral into
the contributions for the three edges,
dU A 2 3 1
AAW + / H(U, ﬁAB) ds + / H(U, ﬁAC) ds + / H(U, ﬁAD) ds = O,
1 2 3

where 71 45 is the unit normal pointing from cell A to cell B, and similarly for 7 4c and 7i4p.

As in one-dimensional case, we assume that the solution everywhere in the control volume
is equal to the cell average value. Finally, the flux at each interface is determined by the
‘upwind’ value using the velocity component normal to the face. For example, at the interface
between cell A and B,

. - . 1, 1.,
H(U,7iag) = H({U4,Up,Tiag) = JUaB *Tiap (Up+Uy) — E‘UAB -iap| (Up —Uys), (7.16)

where i 45 is the velocity between the control volumes. Thus, when @W,p - iap > 0, the flux
is determined by the state from cell A, i.e. Uy. Likewise, when @ - iag < 0, the flux is
determined by the state from cell B, i.e. Ug. The velocity, @4p is usually approximated as
the velocity at the midpoint of the edge (note: @ can be a function of # in two-dimensions
even though the velocity is assumed to be divergence free, i.e. du/dz + 0v/dy = 0). We use
the notation H to indicate that the flux is an approximation to the true flux when 4 is not
constant. Thus, the finite volume algorith prior to time discretization would be given by,
dU 4

AAW + fAI(UA, U, Tiap)Asap + ﬁ(UA, Uc, ftac)Asac + ﬁ(UA’ Up,fiap)Asap = 0.

The final step is to integrate in time. As in the one-dimensional case, we might use a
forward Euler algorithm which would result in the final fully discrete finite volume method,

n+1 n
AUA -~ Ul

A At

+ H(UR, UR, fiag)Asap + HUL, UL fiac) Asac + HUL,UB, fiap)Asap = 0.
(7.17)

Example 7.5 (Finite Volume Method for 2-D Convection on a Rectangular Mesh)
The following Matlab script solves the two-dimensional convection equation using a two-
dimensional finite volume algorithm on rectangular cells. The algorithm is the extension of
Equation 7.17 from triangular to rectangular cells. The problem is assumed to be periodic
and have a constant velocity.
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% Script: convect2d.m

close all;
clear all;

% Specify x range and number of points
x0 = -2;
x1 = 2;
Nx = 40;

% Specify y range and number of points

yo = -2;
yl = 2;
Ny = 40;

% Construct mesh

X = linspace(x0,x1,Nx+1);
y linspace(y0,y1,Ny+1);
[xg,ygl ndgrid(x,y);

% Construct mesh needed for plotting
xp = zeros(4,Nx*Ny) ;
yp = zeros(4,Nx*Ny);

n = 0;
for j = 1:Ny,
for i = 1:Nx,
n=n+1,;

xp(1,n) = x(i);
yp(1,n) = y(j);

xp(2,n) = x(i+1);
yp(2,n) = y(j);

xp(3,n) = x(i+1);
yp(3,n) = y(j+1);

xp(4,n) = x(i);
yp(4,n) = y(j+1);

end
end

% Calculate midpoint values in each control volume

99
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0.5%(x(1:Nx) + x(2:Nx+1));
0.5%(y(1:Ny) + y(2:Ny+1));

xmid
ymid

[xmidg,ymidg] = ndgrid(xmid,ymid);

% Calculate cell size in control volumes (assumed equal)

dx = x(2) - x(1);
dy = y(2) - y(1);
A = dxxdy;

% Set velocity
u-=1;
v=1;

% Set final time
tfinal = 10;

% Set timestep
CFL = 1.0;
dt = CFL/(abs(u)/dx + abs(v)/dy);

% Set initial condition to UO = exp(-x"2 - 20%*y~2)

% Note: technically, we should average the initial

% distribution in each cell but I chose to just set

% the value of U in each control volume to the midpoint
% value of UO.

U = exp(-xmidg."2 - 20*ymidg."2);

t = 0;

% Loop until t > tfinal
while (t < tfinal),

% The following implement the bc’s by creating a larger array

% for U and putting the appropriate values in the first and last
% columns or rows to set the correct bc’s

Ubc(2:Nx+1,2:Ny+1) U; % Copy U into Ubc

Ubc ( 1,2:Ny+1) U(Nx, :); % Periodic bc

Ubc (Nx+2,2:Ny+1) U( 1, :); % Periodic bc

Ubc(2:Nx+1, 1) = U( :,Ny); % Periodic bc

Ubc (2:Nx+1,Ny+2) U( :, 1); % Periodic bc

% Calculate the flux at each interface
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% First the i interfaces
F= 0.5% u *( Ubc(2:Nx+2,2:Ny+1) + Ubc(1:Nx+1,2:Ny+1))
- 0.5%abs(u)*( Ubc(2:Nx+2,2:Ny+1) - Ubc(1:Nx+1,2:Ny+1));

% Now the j interfaces
G= 0.5% v *( Ubc(2:Nx+1,2:Ny+2) + Ubc(2:Nx+1,1:Ny+1))
- 0.5*abs(v)*( Ubc(2:Nx+1,2:Ny+2) - Ubc(2:Nx+1,1:Ny+1));

% Add contributions to residuals from fluxes
R = (F(2:Nx+1,:) - F(1:Nx,:))*dy + (G(:,2:Ny+1) - G(:,1:Ny))x*dx;

% Forward Euler step
U =10 - (dt/A)*R;

% Increment time
t =t + dt;

% Plot current solution
Up = reshape(U,1,Nx*Ny);
clf;

[Hp] = patch(xp,yp,Up);
set (Hp, ’EdgeAlpha’,0);
axis(’equal’);
caxis([0,11);

colorbar;

drawnow;

end

7.4 Extensions of the Finite Volume Method

7.4.1 Nonlinear Systems

The basic finite volume approach can be extended to nonlinear systems of equations such as
the Euler equations (see Example 7.2). The main issue in this extension is how to calculate
an upwind flux when there is a system of equations. In one dimension, the basic finite volume
discretization remains the same as given by Equation 7.13,

Uin+1_Uz'n n n
A$2T+E+% —E_% =0.

The flux, however, must upwind (to some degree) all of the states in the equation. One
relatively simple way in which this can be done is using what is known as the local Lax-
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Friedrichs flux. In this case, the flux is given by,

1 1
Fi (Ui, Uin) = 5 [F(Uir1) + F(Ui)] = 5 8max Uirs = Vi), (7.18)

1
2

where smax is the maximum speed of propagation of any small disturbance for either state
Uz' or Ui+1.

Example 7.6 (Lax-Friedrichs Flux for 1-D Euler Equations) For the one-dimensional
Euler equations, there are three equations which are approrimated, i.e. conservation of mass,
conservation of x-momentum, and conservation of energy. A small perturbation analysis can
be performed which shows that the three speeds of propagation for this set of equations are u,
u—a, and u—+a where u is the flow velocity and a is the speed of sound. Thus, the mazimum
speed will always be |u| + a and the corresponding value of smax for the Laz-Friedrichs fluz
18,
Smax = Max (‘U,|1 + a;, |u\i+1 + a'z'—|—1) .

7.4.2 Higher-order Accuracy

The extension to higher-order accuracy will be discussed in class.



