Lecture 4

Systems of ODE’s and Eigenvalue
Stability

Until know, we have only addressed the integration of a single ODE. In this lecture, we
consider numerical methods for systems of ODE’s.

4.1 Nonlinear Systems

For a system of ODE’s, we have the same canonical form as for a scalar (see Equation 1.5),
uy = f(u,t), (4.1)

except that v and f are vectors of the same length, d:

u = [ur,ug, ug, -+, ug]” = [f, for far- e, fal”

Example 4.1 Nonlinear Pendulum

One manner in which a system of ODE’s occurs is for higher-order ODE’s. A classic
example of this are second-order oscillators such as a pendulum. The nonlinear dynamics of
a pendulum of length L satisfy the following second-order system of equations:

B + 2L sinf = 0. (4.2)
L
To transform this into a system of first-order equations, we define the angular rate, w,

Gtzw.

Then, Equation 4.2 becomes,
wy + % sinf = 0.

() ()

23

For this example,
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A forward Euler method was used to simulate the motion of a pendulum (with L = 1 m,
g = 9.8 m/sec?) released from rest at an angle of 45° at a timestep of At = 0.02 seconds.
The results are shown in Figure 4.1. While the oscillatory motion is evident, the amplitude
is growing which is not expected physically. This would indicate some kind of numerical
stability problem. Note, however, that if a smaller At were used, the amplification would still
be present but not as significant.
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Figure 4.1: Forward Euler solution for nonlinear pendulum with L = 1 m, g = 9.8 m/sec?,
and At = 0.02 seconds.

The same problem was also simulated using the midpoint method. These results are
shown in Figure 4.2. For this method and At choice, the oscillation amplitude is constant
and indicates that the midpoint method is a better choice for this problem than the forward
Euler method.

4.2 Linear Constant Coeflficient Systems

The analysis of numerical methods applied to linear, constant coefficient systems can provide
significant insight into the behavior of numerical methods for nonlinear problems. Consider



4.2. LINEAR CONSTANT COEFFICIENT SYSTEMS 25

50 T T T T T T T T T

401 -

30

20

10

|
N
o
T
|

|
w
o
T
|

_50 ! ! ! ! ! ! ! ! !
0 1 2 3 4 5 6 7 8 9 10

Figure 4.2: Midpoint solution for nonlinear pendulum with L = 1 m, g = 9.8 m/sec?, and
At = 0.02 seconds.

the following problem,
uy = Au, (4.3)

where A is a d x d matrix. Assuming that a complete set of eigenvectors exists, the matrix
A can be decomposed as,

A= RAR ', A =diag(Ag, Agy -+ -, Aa), R=1| ri|re|rs|Ta |75 (4.4)

The solution to Equation 4.3 can be derived as follows,

uy = Au
u, = RAR'w
R ', = AR 'u

Then, defining w = R™u,
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This system of equations is actually uncoupled from each other, so that each of the eigen-
modes has its own independent evolution equation,

(wj)e = A\jwj, for each i =1 to d

Since each of the eigenmodes has a solution w;(t) = w;(0) exp(A;t), then the solution for

u(t) can be written as,
d

u(t) =3 w;(0)r;et’. (4.5)
i=1
Note that the eigenvalues are in general complex, A; = A; +1iA;,. The imaginary part of
the eigenvalues determines the frequency of oscillations, and the real part of the eigenvalues
determines the growth or decay rate. Specifically,

M = A — (cos At + i sin \it) et

Thus, when A, > 0, the solution will grow unbounded as t — oo.

4.3 Eigenvalue Stability for a Linear ODE

As we have seen, while numerical methods can be convergent, they can still exhibit insta-
bilities as n increases for finite At. For example, when applying the midpoint method to
either the ice particle problem in Example 1.5 or the simpler model problem in Example 2.2,
instabilities were seen in both cases as n increased. Similarly, for the nonlinear pendulum
problem in Example 4.1, the forward Euler method had a growing amplitude again indicat-
ing an instability. The key to understanding these results is to analyze the stability for finite
At. This analysis is different than the stability analysis we performed in Section 3.4 since
that analysis was for the limit of At — 0.
Suppose we are interested in solving the linear ODE,

Up = AU.
Consider the Forward Euler method applied to this problem,
" =™ + AR (4.6)
Similar to the zero stability analysis, we will assume that the solution has the following form,
v = g™°, (4.7)

where g is the amplification factor (and the superscript n acting on g is again raising to a
power). As in the zero stability analysis, we wish to determine under what conditions |g| > 1
since this would mean that v™ will grow unbounded as n — oco. Substituting Equation 4.7
into Equation 4.6 gives,

g = (1+ \At)g"™.
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Thus, the only non-zero root of this equation gives,
g =14+ M\At,

which is the amplification factor for the forward Euler method. Now, we must determine
what values of AAt lead to instability (or stability). A simple way to do this for multi-step
methods is to solve for the stability boundary for which |g| = 1. To do this, let g = €? (since
le?| = 1) where 6 = [0, 27r]. Making this substitution into the amplification factor,

=1+t = Mt=¢"Y—1.

Thus, the stability boundary for the forward Euler method lies on a circle of radius one
centered at -1 along the real axis and is shown in Figure 4.3.

3

Figure 4.3: Forward Euler stability region

For a given problem, i.e. with a given ), the timestep must be chosen so that the
algorithm remains stable for n — oco. Let’s consider some examples.

Example 4.2 Let’s return to the previous example, u; = —u? with u(0) = 1. To determine
the timestep restrictions, we must estimate the eigenvalue for this problem. As described in
Lecture 1, linearizing this problem about a known state gives the eigenvalue as A = 0f /0u =
—2u. Since the solution will decay from the initial condition (since u; < 0 because —u? < 0),
the largest magnitude of the eigenvalue occurs at the initial condition when u(0) = 1 and
thus, A = —2. Since this eigenvalue is a negative real number, the marimum At will occur
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at the maximum extent of the stability region along the negative real axis. Since this occurs
when AAt = =2, this tmplies the At < 1. To test the validity of this analysis, the forward
Euler method was run for a At = 0.9 and 1.1. The results are shown in Figure 4.4 which
are stable for At = 0.9 but are unstable for At = 1.1.
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Figure 4.4: Forward Euler solution for u; = —u? with u(0) =1 with A¢ = 0.9 and 1.1.

Example 4.3 Next, let’s consider the application of the forward Fuler method to the pen-
dulum problem. For this case, the linearization produces a matriz,

g_ 0 —4%cosd
ou \ 1 0

The eigenvalues can be found from the roots of the determinant of 0f /Ou — A :

of _ —-A —4cosf
det(a—)\l> = det( 1 )\ )

= )\z—i—%cosezo

= A ::I:i,/%cosﬁ
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Thus, we see that the eigenvalues will always be imaginary for this problem. As a result,
since the forward FEuler stability region does mot contain any part of the imaginary azis

(except the origin), no finite timestep erists which will be stable. This explains why the
amplitude increases for the pendulum simulations in Figure 4.1.

In-class Discussion 4.1 (Midpoint method eigenvalue stability region)



