Lecture 3

Convergence of Multi-Step Methods

In Lecture 2, we began the discussion of convergence. In this lecture, we will complete that
discussion for the class of numerical methods known as multi-step methods (a class that
includes the forward Euler and midpoint methods we have previously discussed).

3.1 Multi-step Methods

The class of finite difference methods known as multi-step methods is one of the most widely-
used approaches for solving ordinary differential equations, and forms the basis for solving
partial differential equations as well.

Definition 3.1 (Multi-step Methods) The generic form of an s-step multi-step method
18,
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A multi-step method with By = 0 is known as an explicit method since in this case the new
value v™ can be determined as an explicit function of known values (i.e. from v' and f;
with i < n). A multi-step method with By # 0 is known as an tmplicit method since in
this case the new value v is an implicit function of itself through the forcing function,

frt = fumt et
Example 3.1 Using the notation given in Definition 3.1, the forward Euler method 1is:
ap = —1 all other o; =0
Br =1 all other B; =0
Example 3.2 Using the notation given in Definition 3.1, the midpoint method is:
ay = —1 all other o; =0

B =2 all other B; =0
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Example 3.3 In this example, we will derive the most accurate multi-step method of the

following form:

v " 4 0™ = A B + Bof" ]

The local truncation error for this method is,

= —oqu" — aQun—l + At [ﬂum + ﬂzfn—l] —
Substitution of f* = u? and P =ul"! gives,

T=—oqu” — apu™ !t + At [Blu? + 52’11/?71] — !

Then, Taylor series about t = t* are substituted for u™~ ', u?™!, and u™t' to give,

1
6At3um + 1

FALB 4+ ALBy [ut N At%m 6At3u?ttt+0(At4)]

T = —oqu" — oy [ — Atuy + AtQUtt At4umt + O(At5)]

[u + Atuy + AtQUtt + At?’uttt +3 At%tttt + O(At5)]

Next, collect the terms in powers of At, which gives the following coefficients:

u: — ap — oy -1
Atul: a + B+ By — 1
At?ul: - 2 — By — %
ANALTIR & + ’32—2 — é
JANALTI - 2 — % — i

To find the most accurate multi-step method of the given form, we solve for the values of
a1, ao, B, and By that result in the coefficients of the first four terms being identically zero.
The resulting values are:

C¥1:4 012:—5 B1:4 ,32:2

Note, with these values, the leading error term is —%At‘luﬁm. Thus, the scheme s third order
accurate (p = 3).

3.2 Dahlquist Equivalence Theorem

In order for a multi-step method to be convergent (as described in Definition 2.1), two
conditions must be met:

Consistency: In the limit of At — 0, the method must be a consistent discretization of the
ordinary differential equation.
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Stability: In the limit of Az — 0, the method must not have solutions that can grow
unbounded as n = T/At — oo.

The Dahlquist Equivalence Theorem in fact guarantees that a consistent and stable multi-
step method is convergent, and vice-versa:

Theorem 3.1 (Dahlquist Equivalence Theorem) A multi-step method is convergent if
and only if it s consistent and stable.

3.3 Consistency
As given in Definition 3.1, a s-step multi-step method can be written as,

S S
Un—l—l + Zaivn—l—l—i _ AtZBifn_H_i — 0’
i=1 i=0
where the forcing terms have been moved to the left-hand side. Substituting the exact
solution, u(t), into the left-hand side will produce a remainder which is in fact the opposite
of the truncation error (see Equation 2.2),

S S
uT Y T = ALY BT =T - N(u L A = 7 (3.1)
i=1 =0
If we only require that 7 — 0 (i.e. 7= O(At)) as At — 0, the method will not generally be
consistent with the ODE. To see why, note that in the limit of At — 0, the forcing terms
will vanish since they are scaled by At¢. Thus, 7 — 0 would place a constraint only on the
a’s. Let’s look at that constraint on the a’s to build some insight. Substituting Taylor series
about ¢ = t" for the values of u gives,

")t = (1 +> ai> u" + O(At).

i=1 i=1
Thus, for 7 — 0 as At — 0 requires,

14+> o =0. (3.2)
=1

This constraint can be interpreted as requiring a constant solution, i.e. u(t) = constant,
to be a valid solution of the multi-step method. Clearly, this is not enough to guarantee
consistency with the ODE since the ODE requires u; = f(u,t).

To achieve a consistent discretization, we force 7/At — 0 (i.e. 7 = O(A¢?)). This
stronger constraint can be shown to enforce that the ODE is satisfied in the limit of At — 0:

T N, A — et
At At
N um, . A — (U™ + Atup + O(A?))
B At
N(u™ttu® . AY) —u™
= A7 —uy + O(At)

N un, . At) — u® " on
= ( A ) — f(u™,t") + O(A?)
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Thus, in the limit of 7/At — 0 as At — 0, then the slope of the numerical method (i.e. the
first term) must be equal to the forcing at ¢". In other words, the multi-step discretization
would satisfy the governing equation in the limit. An equivalent way to write this consistency
constraint is,

1 s ) s )
: n+1 1= R S ny __ nY 4n) —
Aligo A7 ¢ + ;:1 U iE:o Bif u(t") — f(u(t™),t") = 0. (3.3)

In terms of the local accuracy, consistency requires that the multi-step method be at
least first-order (p = 1) since 7 = O(A#™') and consistency requires that 7/At = O(A#?)
must go to zero (i.e. p > 1).

3.4 Stability

The remaining issue to determine is whether the solutions to the multi-step method can
grow unbounded as At — 0 for finite time 7. Consider again the s-step multi-step method:

s s
,Un—l—l + Zaivn—l—l—i — AtZBifn—H—i.
=0

=1

In the limit of At — 0, the multi-step approximation will satisfy the following recurrence
relationship,
S
" Y ™t = 0. (3.4)
i=1

This recurrence relationship can be viewed a providing the characteristic or unforced behavior
of the multi-step method. In terms of stability, the question is whether or not the solutions
to Equation 3.4 can grow unbounded.

Definition 3.2 (Stability) A multi-step method is stable (also known as zero stable) if all
solutions to

S
ot Z a1t =,
i=1

are bounded as n — oco.

To determine if a method if stable, we assume that the solution to the recurrence has the
following form,

where the superscript in the z" term is in fact a power. Note: z can be a complex number.
If the recurrence relationship has solutions with |z| > 1, then the multi-step method would
be unstable.

Example 3.4 In Example 3.3, the most accurate two-step, explicit method was found to be,

v o — By = AL (4" 4 2.
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We will determne if this algorithm is stable. The recurrence relationship s,
o™t 4™ — 5" = 0.
Then, substitution of v = v°2" gives,
242" — 5" = 0.
Factoring this relationship gives,
P (22 +4z — 5) =2"Hz-1)(z+5)=0.

Thus, the recurrence relationship has roots at z = 1, z = =5, and z = 0 (n—1 of these roots).
The root at z = —5 will grow unbounded as n increases so this method is not stable. By the
Dahlquist Equivalence Theorem, this means the method is not convergent (even though it has
local accuracy p = 3 and is therefore consistent).

To demonstrate the lack of convergence for this method (due to its lack of stability),

we again consider the solution of uy = —u? with u(0) = 1. These results are shown in
Figure 3.1 These results clearly show the instability. Note that the solution oscillates as is
expected since the large parasitic root is negative (z = —5). Furthermore, decreasing At from

0.1 to 0.05 only causes the instability to manifest itself in shorter time (though the same
number of steps). Clearly, though the method is consistent, it will not converge because of
this instability.

In-class Discussion 3.1 (Stability of the midpoint method)
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Figure 3.1: Most-accurate explicit, two-step multi-step method applied to @ = —u? with

u(0) = 1 with At = 0.1 (upper plot) and 0.05 (lower plot).



